Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T05:51:13.936Z Has data issue: false hasContentIssue false

Neuropeptides and their evolution

Published online by Cambridge University Press:  06 April 2009

C. Shaw
Affiliation:
Comparative Neuroendocrinology Research Group, Schools of Clinical Medicine and Biology & Biochemistry, The Queen'sUniversity of Belfast, Northern Ireland, UK

Summary

Neuropeptides are ubiquitous signalling molecules in all metazoans possessing nervous systems, from the simple nerve nets of the cnidarians to the immensely complex systems of mammals. While the discipline of peptide neuroendocrinology was born through the study of higher vertebrates, there now exists a plethora of information regarding neuropeptides and peptidic regulatory factors in invertebrates. Such phylogenetic studies have revealed that peptidic neurotransmission is of early evolutionary origin and that, while invertebrates have nervous systems which are simpler in terms of nerve cell number and organisation when compared with vertebrates, the complexity of the peptidic ‘vocabulary’ of invertebrate neurones is of a similar order of magnitude. Most research on invertebrate neuropeptides has been directed towards representative members of groups such as the insects and molluscs and it is only in recent years that efforts have been focused on the helminths (platyhelminths and nematodes). Here, the putative origins of peptidic transmitters is discussed and the current state of knowledge on helminth neuropeptides is reviewed. In order to place the study of helminth neuropeptides in an historical and conceptual perspective, methodological development and conceptual modifications in the disciplines of vertebrate and higher invertebrate peptide neuroendocrinology have been summarised.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banting, F. G. & Best, C. H. (1922). The discovery of insulin. Journal of Laboratory and Clinical Medicine 5, 256–71.Google Scholar
Bayliss, V. M. & Starling, E. H. (1902). The mechanism of pancreatic secretion. Journal of Physiology 28, 325–53.CrossRefGoogle ScholarPubMed
Berson, S. A. & Yalow, R. S. (1958). Isotopic tracers in the study of diabetes. Advances in Biology and Medical Physics 6, 349420.CrossRefGoogle Scholar
Brownlee, D. J. A., Fairweather, I., Johnston, C. F., Smart, D., Shaw, C. & Halton, D. W. (1993). Immunocytochemical demonstration of neuropeptides in the central nervous system of the roundworm, Ascaris suum(Nematoda, Ascaroidea). Parasitology 106, 305–16.CrossRefGoogle ScholarPubMed
Coons, A. H., Leduc, E. H. & Connolly, J. M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to the study of the hyperimmune rabbit. Journal of Experimental Medicine 102, 4960.CrossRefGoogle Scholar
Cowden, C. & Stretton, A. O. w. (1993). AF2, an Ascaris neuropeptide: isolation, sequence and bioactivity. Peptides 14, 423–30.CrossRefGoogle ScholarPubMed
Cowden, C., Stretton, A. O. W. & Davis, A. E. (1989). AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 2, 1465–73.CrossRefGoogle ScholarPubMed
Curry, W. J., Shaw, C., Johnston, C. F., Thim, L. & Buchanan, K. D. (1992). Neuropeptide F: primary structure from the turbellarian, Artioposthia triangulata. Comparative Biochemistry and Physiology 101C, 269–74.Google Scholar
Darmer, D., Schmutzler, C., Diekoff, D. & Grimmelikhuijzen, C. J. P. (1991). Primary structure of the precursor for the sea anamone neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-NH2). Proceedings of the National Academy of Sciences, USA 88, 2555–59.CrossRefGoogle ScholarPubMed
Ezzell, C. (1989). The flatworm's turn. Nature 339, 648.CrossRefGoogle ScholarPubMed
Geary, T. G., Klein, R. D., Vanover, L., Bowman, J. W. & Thompson, D. P. (1992a). The nervous systems of helminths as targets for drugs. Journal of Parasitology 78, 215–30.CrossRefGoogle ScholarPubMed
Geary, T. G., Price, D. A., Bowman, J. W., Winterrowd, C. A., Mackenzie, C. D.Garrison, R. D., Williams, J. F. & Friedman, A. R. (1992b). Two FMRFamide-like peptides from the free-living nematode Panagrellus redivivus. Peptides 13, 209–14.CrossRefGoogle ScholarPubMed
Halton, D. W., Shaw, C., Maule, A. G. & Smart, D. (1994). Regulatory peptides in helminth parasites. Advances in Parasitology 34, 163227.CrossRefGoogle ScholarPubMed
Johnston, R. N., Shaw, C., Halton, D. W., Verhaert, P. & Baguna, J. (1995). GYIRFamide: a novel FMRFamide-related peptide (FaRP) from the triclad turbellarian, Dugesia tigrina. Biochemical and Biophysical Research Communications 209, 689–97.CrossRefGoogle ScholarPubMed
Johnston, R. N., Shaw, C., Halton, D. W., Verhaert, P., Blair, K. L., Brennan, G. P., Anderson, P. A. V. & Price, D. A. (1996). Isolation, localization and bioactivity of the FMRFamide-related neuropeptides, GYIRFamide and YIRFamide, from the marine turbellarian, Bdelloura Candida. Journal of Neurochemistry 67, 814–21.CrossRefGoogle ScholarPubMed
Jorpes, J. E. (1968). The isolation and chemistry of secretin and cholecystokinin. Gastroenterology 55, 157–64.CrossRefGoogle ScholarPubMed
Keating, C. D., Holden-Dye, L., Thorndyke, M. C., Williams, R. G., Mallett, A. & Walker, R. J. (1995). The FMRFamide-like neuropeptide AF2 is present in the parasitic nematode, Haemonchus contortus. Parasitology 111, 515–21.CrossRefGoogle ScholarPubMed
Leroith, D., Delahunty, G., Wilson, G. L., Roberts, C. T., Shemer, J., Hart, C., Lesniak, M. A., Shiloach, J. & Roth, J. (1986). Evolutionary aspects of the endocrine and nervous systems. Recent Progress in Hormone Research 42, 549–87.Google ScholarPubMed
Leung, P. S., Shaw, C., Maule, A. G., Thim, L., Johnston, c. F. & Irvine, G. B. (1992). The primary structure of neuropeptide F (NPF) from the garden snail, Helix aspersa. Regulatory Peptides 41, 7181.CrossRefGoogle ScholarPubMed
Linacre, A., Kellett, E., Saunders, S., Bright, K., Benjamin, p. R. & Burke, J. F. (1990). Cardioactive neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) and novel related peptides are encoded in multiple copies by a single gene in the snail, Lymnaea stagnalis. Journal of Neuroscience 10, 412–19.CrossRefGoogle ScholarPubMed
Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. w. & Shaw, C. (1989). Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica(Trematoda, Digenea). Parasitology 98, 227–38.CrossRefGoogle ScholarPubMed
Marks, N. J., Shaw, C., Maule, A. G., Davis, J. P., Halton, D. W., Verhaert, P., Geary, T. G. & Thompson, D. P. (1995). Isolation of AF2 (KHEYLRFamide) from Caenorhabditis elegans: evidence for the presence of more than one FMRFamide-related peptide-encoding gene. Biochemical and Biophysical Research Communications 217, 845–51.CrossRefGoogle ScholarPubMed
Maule, A. G., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1989). Immunocytochemical demonstration of neuropeptides in the fish-gill parasite Diclidophora merlangi(Monogeniodea). International Journal for Parasitology 19, 307–16.CrossRefGoogle Scholar
Maule, A. G., Shaw, C., Bowman, J. W., Halton, D. W., Thompson, D. P., Geary, T. G. & Thim, L. (1994b). The FMRFamide-like neuropeptide AF2 (Ascaris suum) is present in the free-living nematode, Panagrellus redivivus(Nematoda, Rhabditida). Parasitology 109, 351–6.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Bowman, J. W., Halton, D. W., Thompson, D. P., Geary, T. G. & Thim, L. (1994c). KSAYMRFamide: anovel FMRFamide-related heptapeptide from the free-living nematode, Panagrellus redivivus, which is myoactive in the parasitic nematode, Ascaris suum. Biochemical and Biophysical Research Communications 200, 973–80.CrossRefGoogle Scholar
Maule, A. G., Shaw, C., Bowman, J. W., Halton, D. W., Thompson, D. P., Thim, L., Kubiak, T. M., Martin, R. A. & Geary, T. G. (1995). Isolation and preliminary biological characterization of KPNFIRFamide, anovel FMRFamide-related peptide from the freeliving nematode, Panagrellus redivivus. Peptides 16, 87–93.CrossRefGoogle Scholar
Maule, A. G., Shaw, C., Halton, D. W., Curry, W. J. & Thim, L. (1994a). RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP). Regulatory Peptides 50, 3743.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Breenan, G. P., Johnston, c. F. & Moore, S. (1992). Neuropeptide F (Moniezia expansa): localization and characterization using specfic antisera. Parasitology 105, 505–12.CrossRefGoogle Scholar
Maule, A. G., Shaw, C., Halton, D. W. & Thim, L. (1993). GNFFRFamide: a novel FMRFamideimmunoreactive peptide isolated from the sheep tapeworm, Moniezia expansa. Biochemical and Biophysical Research Communications 193, 1054–60.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Thim, L., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa(Cestoda, Cyclophyllidea). Parasitology 102, 309–16.CrossRefGoogle Scholar
Mckay, D. M., Shaw, C., Halton, D. W., Thim, L. & Buchanan, K. D. (1992). The primary structure and tissue distribution of an amphibian neuropeptide Y. Regulatory Peptides 37, 143–53.CrossRefGoogle ScholarPubMed
Mckay, D. M., Shaw, C., Thim, L., Johnston, C. F., Halton, D. W., Fairweather, I. & Buchanan, K. D. (1990). The complete primary structure of pancreatic polypeptide from the European common frog, Rana temporaria. Regulatory Peptides 31, 187–98.CrossRefGoogle ScholarPubMed
Nassel, D. R. (1993). Neuropeptides in the insect brain: a review. Cell and Tissue Research 273, 129.CrossRefGoogle ScholarPubMed
Pearse, A. G. E. (1969). The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series, and the embryologic, physiologic and pathologic implications of the concept. Journal of Histochemistry and Cytochemistry 17, 303–12.CrossRefGoogle ScholarPubMed
Pearse, A. G. E. (1976). Peptides in brain and intestine. Nature 262, 92–4.CrossRefGoogle Scholar
Price, D. A. & Greenberg, M. J. (1977). Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670–1.CrossRefGoogle ScholarPubMed
Raina, A. K. & Gade, G. (1988). Insect peptide nomenclature. Insect Biochemistry 18, 785–7.CrossRefGoogle Scholar
Rajpara, S. M., Garcia, P. D., Roberts, R., Eliassen, J. C., Owens, D. F., Maltby, D., Myers, R. M. & Mayeri, E. (1992). Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons. Neuron 9, 505–13.CrossRefGoogle ScholarPubMed
Rosoff, M. L., Burglin, T. R. & Li, C. (1992). Alternatively spliced transcripts of the flp-1 gene encode distinct FMRFamide-like peptides in Caenorhabditis elegans. Journal of Neuroscience 12, 2356–61.CrossRefGoogle ScholarPubMed
Schwartz, T. W., Fuhlendorff, J., Kjems, L. L., Kristensen, M. S., Vervelde, M., O’hare, M., Krstenansky, J. L. & Bjornholm, B. (1990). Signal epitopes in the three-dimensional structure of neuropeptide Y - interaction with Yl, Y2 and pancreatic polypeptide receptors. Annals of the New York Academy of Sciences 611, 3547.CrossRefGoogle Scholar
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W., Shaw, C. & Buchanan, K. D. (1990). Immunoreactivity to the pancreatic polypeptide family in the nervous system of the human blood fluke, Schistosoma mansoni. Cell and Tissue Research 261, 573–81.CrossRefGoogle Scholar
Smart, D., Shaw, C., Johnston, C. F., Halton, D. W., Fairweather, I. & Buchanan, K. D. (1992). Chromatographic and immunological characterisation of immunoreactivity towards pancreatic polypeptide and neuropeptide Y in the nematode Ascaris suum. Comparative Biochemistry and Physiology 102C, 477–81.Google Scholar
Spittaels, K., Verhaert, P., Shaw, C., Johnston, R. N., Devreese, B., Van Beeumen, J. & De Loof, A. (1996). Insect neuropeptide F (NPF)-related peptides: isolation from Colorado potato beetle (Leptinotarsadecemlineata) brain. Insect Biochemistry and Molecular Biology 26, 375–82.CrossRefGoogle Scholar
Straus, E. & Yalow, R. s. (1979). Gastrointestinal peptides in the brain. Federation Proceedings 38, 2320–4.Google ScholarPubMed
Tatemoto, K., Carlquist, M. & Mutt, V. (1982). Neuropeptide Y-a novel brain peptide with structural similarities to peptide tyrosine tyrosine and pancreatic polypeptide. Nature, London 296, 659–60.CrossRefGoogle Scholar
Von Euler, U. S. & Gaddum, J. H. (1931). An unidentified depressor substance in certain tissue extracts. Journal of Physiology 72, 7884.Google Scholar
Walker, R. J. (1992). Neuroactive peptides with an RFamide or F amide carboxyl terminus. Comparative Biochemistry and Physiology 102C, 213–22.Google Scholar