Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T13:12:33.319Z Has data issue: false hasContentIssue false

Orientatractis moraveci n. sp. and Rondonia rondoni Travassos, 1920 (Nematoda: Atractidae), parasites of Pimelodus blochii (Osteichthyes, Pimelodidae) from the Acre and Xapuri Rivers, Western Amazon, Brazil

Published online by Cambridge University Press:  17 October 2016

PEDRO H. O. CAVALCANTE
Affiliation:
Instituto Federal do Acre – IFAC, Xapuri, AC, Brazil Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fiocruz
MARALINA T. SILVA
Affiliation:
Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fiocruz Instituto Federal do Acre – IFAC, Rio Branco, AC, Brazil
EVERTON G. N. SANTOS
Affiliation:
Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil Fundação Instituto de Pesca do Estado do Rio de Janeiro – FIPERJ, Escritório Regional Metropolitano II, Rua Aílton da Costa, 115, sl. 606 – Vinte Cinco de Agosto, Duque de Caxias – RJ, 25071-160
VANESSA A. CHAGAS-MOUTINHO
Affiliation:
Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
CLAUDIA P. SANTOS*
Affiliation:
Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
*
*Corresponding author: Laboratório de Avaliação e Promoção a Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, 21040-360, Brazil. E-mail: cpsantos@ioc.fiocruz.br

Summary

The fish fauna in the State of Acre represents 10·7% of all fish species recorded from Brazil, but, despite this, there are few fish parasite studies in this area. The recent expansion of fish farming in Acre prompted a need for helminthological studies of the most commonly consumed fish species in the area, Pimelodus blochii (Pimelodidae). The aim of this study was to analyse the helminth fauna of P. blochii from the Acre and Xapuri Rivers in Northwestern Brazil. Numerous nematodes were collected from the intestine and two species of the family Atractidae were identified: Rondonia rondoni Travassos, 1920 and Orientatractis moraveci n. sp. The new species is distinguished from its congeners mainly by having: 10 pairs of caudal papillae (3 pairs pre-cloacal, 2 pairs ad-cloacal and 5 pairs post-cloacal); unequal spicules of 161–198 and 69–100 µm long; and a gubernaculum 38–58 µm long with an antero-lateral process. Morphological and ultrastructural data on O. moraveci n. sp. and R. rondoni are presented, in addition to new genetic data based on partial 18S rDNA and 28S rDNA. The taxonomic status of Labeonema synodontisi (Vassiliadès, 1973) is discussed, suggesting that it should be returned to the genus Raillietnema.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acre (2010). Zoneamento Ecológico-Econômico do Acre, Fase II (Escala 1:250.000): Documento síntese, 2Edn, pp. 356. SEMA, Rio Branco.Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Buckley, J. J. C. (1969). On a remarkable oxyurid nematode, Orientatractis leiperi n. sp., (Atractidae) from a South American tortoise, Podocnemis vogli . Journal of Helminthology 43, 218286.Google Scholar
Bursey, C. R., Goldberg, S. R. and Kraus, F. (2014). New species of Orientatractis (Nematoda: Atractidae), new species of Rondonia (nematode: Atractidae) and other helminths in Austrochaperina basipalmata (Anura: Microphylidae) from Papua New Guinea. Acta Parasitologica 59, 115121.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83, 575583.Google Scholar
Chisholm, L. A., Morgan, J. A., Adlard, R. D. and Whittington, I. D. (2001). Phylogenetic analysis of the Monocotylidae (Monogenea) inferred from 28S rDNA sequences. International journal for parasitology, 31, 15371547.CrossRefGoogle ScholarPubMed
Costa, S. C. G. (1963). Rondonia rondoni Travassos, 1920 (Nematoda: Atractidae). Memórias Instituto Oswaldo Cruz 61, 7588.Google Scholar
Gállego-Berenger, J. (1947). Revisión de la família Atractidae Travassos, 1920 co descripción de nuevas espécies. Revista Ibérica de Parasitología 7, 390.Google Scholar
Gibbons, L. M. and Platt, T. R. (2006). Rhinoclemmysnema n. g. and three new species of nematodes of the family Atractidae (Cosmocercoidea), with notes on the helminth fauna of Rhinoclemmys pulcherrima (Testudines: Bataguridae) in Costa Rica. Journal of Helminthology 80, 333340.Google Scholar
González-Solís, D. and Moravec, F. (2004). Two new species, Orientatractis campechensis n.sp. and Orientatractis chiapasensis n.sp. (Nematoda: Atractidae) from cichlid fishes in southern Mexico and Nicaragua. Journal of Parasitology 90, 14431449.CrossRefGoogle ScholarPubMed
Goulding, M. (1980). The Fishes and the Forest: Explorations in Amazonian Natural History. University of California Press, Berkeley and Los Angeles.Google Scholar
Hassouna, N., Michot, B. and Bachellerie, J. P. (1984). The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Research 12, 35633583.Google Scholar
Koubková, B., Baruš, V., Hodová, I. and Šimková, A. (2008). Morphometric and molecular characteristics of Labeonema synodontisi n. comb. (Nematoda: Atractidae) from the West African fishes. Parasitology Research 102, 10131020.CrossRefGoogle ScholarPubMed
Lundberg, J. G. and Littmann, M. W. (2003). Pimelodidae (Long-whiskered catfishes). In Checklist of the Freshwater Fishes of South and Central America (ed. Reis, R. E., Kullander, S. O. and Ferraris, C. J. Jr.), pp. 432446. EDIPUCRS, Porto Alegre, Brasil.Google Scholar
Moravec, F. and Van As, J. G. (2004). Nematodes from the squeaker fishes Synodontis nigromaculatus and S. vanderwaali from the Okavango River, Botswana, including three new species. Systematic Parasitology 59, 169187.Google Scholar
Moravec, F., Kohn, A. and Fernandes, M. M. (1992). Nematode parasites of fishes of the Paraná River, Brazil. Part 1. Trichuroidea, Oxyuroidea and Cosmorcecoidea. Folia Parasitologica 39, 327353.Google Scholar
Moravec, F., Kamchoo, K. and Pachanawan, A. (2015). New nematode species, Orientatractis mekongensis n. sp. (Atractidae) and Neosynodontisia suratthaniensis n. g., n. sp. (Pharyngodonidae) from freshwater fishes in Thailand. Systematic Parasitology 92, 197209.Google Scholar
Nadler, S. A., Carreno, R. A., Mejía-Madrid, H., Ullberg, J., Pagan, C., Houston, R. and Hugot, J. P. (2007). Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology 134, 14211442.Google Scholar
Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
Pereira, F. B., Tavares, L. E. R., Paiva, F., Scholz, T. and Luque, J. L. (2015). A morphological and molecular study of Spectatus spectatus (Kathlaniidae), including redescription of the species and amendment of genus diagnosis. Journal of Parasitology 101, 468475.Google Scholar
Petter, A. J. (1966). Equilibre des especes dans les populations de nematodes parasites du colon des tortues terrestres. Mémoires du Muséum national d'Histoire naturelle, Series A., Zoologie, 39, 1252.Google Scholar
Reis, I. C., Honório, N. A., Barros, F. S. M., Kitron, C. B. U., Camara, D. C. P., Pereira, G. R., Keppeler, E. C., Silva-Nunes, M. and Codeço, C. T. (2015). Epidemic and endemic malaria transmission related to fish farming ponds in the Amazon frontier. PLoS ONE 9, e0137521. doi. 10.1371/journal.pone.0137521.Google Scholar
Reis, R. E., Kullander, S. O. and Ferraris, C. J. (2003). Introduction, p. 19 In Reis, R. E., Kullander, S. O. and Ferraris, C. J. (ed.). Checklist of the Freshwater Fishes of South and Central America . Edipucrs, Porto Alegre.Google Scholar
Ribeiro, F. R. V. and Lucena, C. A. L. (2006). Nova espécie de Pimelodus (Siluriformes, Pimelodidae) dos Rios Tapajós e Tocantins, Brasil. Iheringia, Série Zoologia 90, 321327.Google Scholar
Ronquist, F. and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), 4.0 Edn, Sinauer, Sunderland, MA.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Travassos, L. (1920). Esbôço de uma chave geral dos nematódeos parasitos. Revista de Veterinária e Zootecnia 10, 5970.Google Scholar
Travassos, L., Artigas, P. and Pereira, C. (1928). Fauna helmintológica dos peixes de água doce do Brasil. Arquivos do Instituto Biológico 1, 568.Google Scholar
Vieira, J. P., Giarrizzo, T. and Spach, H. (2006). Necton. In Avaliação Ambiental de Estuários Brasileiros: Diretrizes Metodológicas (ed. Lana, P. C., Bianchini, A., Ribeiro, C., Niencheski, L. F. H., Filmann, G. and Santos, C. G. S.), Vol. 1. Museu Nacional, Rio de Janeiro, 145147.Google Scholar