Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T11:22:36.776Z Has data issue: false hasContentIssue false

The physiology of excystment of the metacercaria of Fasciola hepatica L.

Published online by Cambridge University Press:  06 April 2009

K. E. Dixon
Affiliation:
Department of Zoology, School of General Studies, The Australian National University, Canberra, A.C.T.

Extract

Excystment of the metacercaria of Fasciola hepatica is an active process and occurs in two stages—activation and emergence. Activation is initiated by high concentrations of carbon dioxide, reducing conditions and a temperature about 39 °C. The reducing conditions increase the rate of action of the other two stimuli. The carbon dioxide stimulus need only be applied for 5 min, but the exposure time to the reducing conditions has to be of the order of 30 min. Changes in the order of application of the stimuli carbon dioxide and redox potential have no effect.

The second phase, emergence, is triggered by bile. Metacercariae were held in an activated condition for 24 h, and when bile was added emergence took place normally.

During excystment the metacercariae exhibit a complex behaviour pattern. After activation there is an initial period of rotatory activity, but after about 20 min a quiescent phase ensues when the metacercariae contract away from the cyst wall at an imperceptible rate. This behaviour occurs in response to stimulus from a high concentration of carbon dioxide and a temperature about 39 °C. When the metacercariae are exposed to bile the second phase of activity is initiated, consisting of antero-posterior thrusting movements directed against the ventral side of the cyst wall. Within about 15 min the juvenile flukes escape through a small circular hole in the ventral surface of the cyst wall which corresponds to the ventral plug region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ameel, D. J. (1934). Paragonimus, its life history in North America and its taxonomy (Trematoda: Troglotrematidae). Am. J. Hyg. 19, 279317.Google Scholar
Balasingam, E. (1962). Studies on fascioliasis of cattle and buffaloes in Singapore due to Fasciola gigantica Cobbold. Ceylon vet. J. 10, 1029.Google Scholar
Barnett, A. J. G. & Reid, R. L. (1961). Reactions in the Rumen. 252 pp. London: Arnold.Google Scholar
Bartnicki-Garcia, S., Eren, J. & Pramer, D. (1964). Carbon dioxide-dependent morphogenesis in Arthrobotrys conoides. Nature, Lond., 204, 804.CrossRefGoogle Scholar
Bergeim, O., Kleinberg, J. & Kirch, E. R. (1945). Oxidation-reduction potentials of the contents of the gastrointestinal tract. J. Bact. 49, 453–8.CrossRefGoogle ScholarPubMed
Bezubik, B. & Furmaga, S. (1959). The helminth parasites in Macasus rhesus Audeb., from China. Acta parasit. pol. 7, 591–8.Google Scholar
Bono, G. Del & Pellegrini, N. (1959). Enzoozia nel corigles da Distomum hepaticum, Linne 1758. Zooprofilassi, 14, 379–91.Google Scholar
Bullock, T. H. (1957). The trigger concept in biology. In Physiological Triggers and Discontinuous Rate Processes, pp. 18. Ed. Bullock, T. H.. Washington: American Physiological Society.Google Scholar
Campbell, W. C. (1963). The efficacy of surface active agents in stimulating the evagination of cysticerci in vitro . J. Parasit. 49, 81–4.CrossRefGoogle ScholarPubMed
Ching, H. L. (1963 a). The description and life cycle of Maritrema laricola sp.n. (Trematoda Microphallidae). Can. J. Zool. 41, 881–8.CrossRefGoogle Scholar
Ching, H. L. (1963 b). The life cycle and bionomics of Levinseniella charadriformis Young, 1949 (Trematoda: Microphallidae). Can. J. Zool. 41, 889–99.CrossRefGoogle Scholar
Dawes, B. (1961). On the early stages of Fasciola hepatica penetrating into the liver of an experimental host, the mouse, a histological picture. J. Helminth. (R. T. Leiper Suppl.), pp. 4152.CrossRefGoogle Scholar
Dawes, B. (1963). The migration of juvenile forms of Fasciola hepatica L. through the walls of the intestines in the mouse with some observations on food and feeding. Parasitology, 53, 109–22.CrossRefGoogle Scholar
Dawes, B. & Hughes, D. L. (1964). Fasciolasis: the invasive stages of Fasciola hepatica in mammalian hosts. In Advances in Parasitology, vol. 2, pp. 97168. Ed. Dawes, B.. London: Academic Press.Google Scholar
Delyamure, S. L. (1955). The helminth fauna of marine mammals in the light of their ecology and phylogeny. Izdatelstsvo Akademii Nauk SSSR, 517 pp.Google Scholar
Dixon, K. E. (1964). Excystment of metacercariae of Fasciola hepatica L. in vitro. Nature, Lond., 202, 1240–1.CrossRefGoogle Scholar
Dixon, K. E. (1965). The structure and histochemistry of the cyst wall of the metacercaria of Fasciola hepatica L. Parasitology 55, 215–26.CrossRefGoogle ScholarPubMed
Dixon, K. E. & Mercer, E. H. (1964). The fine structure of the cyst wall of the metacercaria of Fasciola hepatica. Qt. Jl microsc. Sci. 105, 385–9.Google Scholar
Dixon, K. E. & Mercer, E. H. (1965). The fine structure of the nervous system of the cercaria of the liver fluke, Fasciola hepatica L. J. Parasit. 51, 967–76.CrossRefGoogle ScholarPubMed
Doran, D. J. & Farr, M. M. (1962). Excystation of the poultry coccidium Eimeria acervulina. J. Protozool. 9, 154–61.CrossRefGoogle ScholarPubMed
Dougherty, E. C., Hansen, E. L., Nicholas, W. L., Mollett, J. A. & Yarwood, E. A. (1959). Axenic cultivation of Caenorhabditis briggsae (Nematoda: Rhabditidae) with unsupplemented and supplemented chemically defined media. Ann. N.Y. Acad. Sci. 77, 176217.CrossRefGoogle Scholar
Dunn, A. D. & Thompson, W. (1923). The carbon dioxide and oxygen content of stomach gas in normal persons. Arehs intern. Med. 31, 18.Google Scholar
Edsall, J. T. & Wyman, J. (1958). Biophysical Chemistry, vol. 1, 699 pp. New York: Academic Press.Google Scholar
Edwards, W. T. (1943). Fascioliasis in a mule. Jl R. Army vet. Cps, 15, 12.Google Scholar
Ezzat, M. A. E., Tadros, G. & Rifaie, A. (1963). Parenteral treatment of fascioliasis in cattle and buffaloes in Egypt. Vet. Rec. 75, 273–4.Google Scholar
Fairbairn, D. (1960). Physiologic aspects of egg hatching and larval exsheathment in nematodes. In Host Influence on Parasite Physiology, pp. 5064. Ed. Stauber., L. A.New Brunswick, N.J.: Rutgers University Press.Google Scholar
Farr, M. M. & Doran, D. J. (1962). Comparative excystation of four species of poultry coccidia. J. Protozool. 9, 403–6.CrossRefGoogle ScholarPubMed
Faust, E. C. & Khaw, O. K. (1927). Studies on Clonorchis sinensis (Cobbold). Am. J. Hyg. Mongr. Ser. no. 8, 284 pp.Google Scholar
Ferguson, M. S. (1940). Excystment and sterilization of metacercariae of the avian strigeid trematode, Posthodiplostomum minimum, and their development into adult worms in sterile cultures. J. Parasit. 26, 359–72.CrossRefGoogle Scholar
Harrison, D. C. & Quastel, J. H. (1928). The reduction potential of cysteine. Biochem. J. 22, 683–8.CrossRefGoogle ScholarPubMed
Hemenway, M. (1948). Studies on excystment of Clinostomum metacercariae by use of artificial digestion. Proc. Iowa Acad. Sci. 55, 375–81.Google Scholar
Hewitt, L. F. (1950). Oxidation-reduction potentials. In Bacteriology and Biochemistry, 6th ed., 216 pp. Edinburgh: E. and S. Livingstone.Google Scholar
Hoeppli, R. & Wu, C. L. (1952). Parasitic infections of the human liver of interest to medical workers in China. Chin. med. J. 70, 182212.Google ScholarPubMed
Hoffman, G. L. (1958). Experimental studies on the cercariae and metacercaria of a Strigeoid Trematode, Posthodiplostomum minimum. Expl Parasit. 7, 2350.CrossRefGoogle ScholarPubMed
Holmes, R. G. (1962). Fascioliasis in coypus (Myocastor coypus). Vet. Rec. 74, 1552.Google Scholar
Hsu, H. F. & Wang, L. S. (1938). Studies on certain problems of Clonorchis sinensis. IV. Notes on the resistance of cysts in fish flesh, the migration route and the morphology of the young worms in the final host. Chin. med. J. Suppl. 2, 385400.Google Scholar
Hughes, D. L. (1959). Chemotherapy of experimental Fasciola hepatica infections. M.Sc. Thesis, University of London.Google Scholar
Hughes, D. L. (1963), quoted in Dawes & Hughes (1964).Google Scholar
Hunsgate, R. E. (1960). Factors influencing the rumen protozoa. In Host Influence on Parasite Physiology, pp. 2440. Ed. Stauber., L. A.New Brunswick, N.J.: Rutgers University Press.Google Scholar
Hunter, W. S. & Chait, D. C. (1952). Notes on excystment and culture in vitro of the microphallid trematode, Gynaecotyla adunca (Linton, 1905). J. Parasit. 38, 87.CrossRefGoogle Scholar
Hyden, S. (1955). The recovery of polyethylene glycol after passage through the digestive tract. K. Lantbr Högsk. Annlr. 22, 411–24.Google Scholar
Hyden, S. (1961 a). Determination of the amount of fluid in the reticulorumen of the sheep and its rate of passage to the omasum. K. LantbrHögsk. Annlr, 27, 5179.Google Scholar
Hyden, S. (1961 b). The use of reference substances and the measurement of flow in the alimentary tract. In Digestive Physiology and Nutrition of the Ruminant, pp. 3546. Ed. Lewis, D.London: Butterworth.Google Scholar
Jackson, A. R. B. (1962). Excystation of Eimeria arloingi (Marotel, 1905): stimuli from the host sheep. Nature, Lond. 194, 847–9.CrossRefGoogle Scholar
Johnston, T. H. (1909). The Entozoa of Monotremata and Australian Marsupialia. No. 1. Proc. Linn. Soc. N.S.W. 34, 514–23.Google Scholar
Johnston, T. H. (1911). The Entozoa of Monotremata and Australian Marsupialia. No. 2. Proc. Linn. Soc. N.S.W. 36, 4757.Google Scholar
Kendall, E. C. & Loewen, D. F. (1928). The mechanism of oxidation reduction potential. Biochem. J. 22, 669–82.CrossRefGoogle ScholarPubMed
Kobayashi, A.et al. (1959). Studies on excystation of the metacercaria of Metagonimus yokogawai. Acta Sch. med. Gifu. 7, 822828. (abstract in Helminth. Abstr. 29, 221.)Google Scholar
Kovacs, F. & Nemeseri, L. (1958). Die Behandlung der Leberegelkrankheit von Schweinen durch intramusculäre Verabreichung von Tetrachlorkohlenstoff. Acta vet. hung. 8, 165–71.Google Scholar
Krull, W. H. (1933). Studies on the life history of a frog lung fluke, Haematoloechus complexus (Seely, 1906) Krull, n.comb. Z. ParasitKde. 6, 192206.CrossRefGoogle Scholar
Krull, W. H. & Price, H. F. (1932). Studies on the life history of Diplodiscus temperatus (Stafford) from the frog. Occ. Pap. Mus. Zool. Univ. Mich. no. 237, 39 pp.Google Scholar
Larsh, J. E. (1947). The relationship in mice of intestinal emptying time and natural resistance to Hymenolepis. J. Parasit. 33, 7984.CrossRefGoogle ScholarPubMed
Lengy, G. (1960). Study on Paramphistomum microbothrium Fischoeder, 1901, a rumen parasite of cattle in Israel. Bull. Res. Coun. Israel. (Sect. B), 9, 71130.Google Scholar
Loomis, W. E. (1959). Feedback control of growth and differentiation. Carbon dioxide tension and related metabolic variables. In Cell, Organism and Milieu, pp. 272–94. Ed. Rudnick, D.. New York: Ronald Press.Google Scholar
McDonald, I. W. (1958). The utilization of ammonia-nitrogen by the sheep. Proc. Aust. Soc. Anim. Prod. 2, 4651.Google Scholar
Macchioni, G. (1962). Su di un raro case di distomatosi epatica spontanea da Fasciola hepatica nel ratio delle chiauche (Rattus norvegicus). Annali Fac. Med. vet. Univ. Pisa, 15, 136–9.Google Scholar
Malanowska, T. (1962). Przypadek motylicy watrobowej u zaja¸ca. Medycyna wet. 18, 464.Google Scholar
Moir, R. J., Somers, M. & Waring, H. (1956). Studies on marsupial nutrition. 1. Ruminantlike digestion in a herbivorous marsupial (Setonix brachyurus Quoy & Gaimard). Aust. J. biol. Sci. 9, 293304.CrossRefGoogle Scholar
Oshima, T. & Kihata, M. (1958). Studies on the excystation of the metacercariae of Paragonimus westermani. 1. Especially on the effect of bile salts. Bull. Inst. publ. Hlth, Tokyo, 7, 256–69.Google Scholar
Oshima, T., Yoshida, Y. & Kihata, M. (1958). Studies on the excystation of the metacercariae of Paragonimus westermani. 2. Influence of pepsin pretreatment on the effect of bile salts. Bull. Inst. publ. Hlth, Tokyo, 7, 270–4.Google Scholar
Pankhurst, J. W. (1963). Liver fluke in donkeys. Vet. Rec. 75, 434.Google Scholar
Paperna, I. & Lengy, J. (1963). Notes on a new subspecies of Bolbophorus confusus (Krause, 1914) Dubois 1935 (Trematoda: Diplostomatidae), a fish-transmitted bird parasite. Israel J. Zool. 12, 171–82.Google Scholar
Price, E. W. (1932). The trematode parasites of marine mammals. Proc. U.S. natn. Mus. 81, art. 13, 68 pp.CrossRefGoogle Scholar
Read, C. P. (1950). The vertebrate small intestine as an environment for parasitic helminths. Rice Inst. Pamph. 37, 194.Google Scholar
Read, C. P. (1955). Intestinal physiology and the host–parasite relationship. In Some Physiological Aspects and Consequences of Parasitism, pp. 2743. Ed. Cole, W. H., New Brunswick, N.J.: Rutgers University Press.Google Scholar
Read, C. P. & Voge, M. (1954). The size attained by Hymenolepis diminuta in different host species. J. Parasit. 40, 88–9.CrossRefGoogle ScholarPubMed
Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. cell Biol. 17, 208–12.CrossRefGoogle ScholarPubMed
Robinson, C. S., Luckey, H. & Mills, H. (1943). Factors affecting the hydrogen ion concentration of the contents of the small intestine. J. biol. Chem. 147, 175–81.CrossRefGoogle Scholar
Rogers, W. P. (1961). The Nature of Parasitism, 287 pp. London: Academic Press.Google Scholar
Rogers, W. P. & Sommerville, R. I. (1963). The infective stage of nematode parasites and its significance in parasitism. In Advances in Parasitology, vol. 1, pp. 109–77. Ed. Dawes, B.. London: Academic Press.Google Scholar
Ryklan, L. R. & Schmidt, C. L. A. (1944). The oxidation potentials of cystine–cysteine and related systems. Univ. Calif. Publs Physiol. 8, 257–75.Google Scholar
Savin, Z. (1960). Spontaneous fascioliasis in Citellus citellus. Acta vet., Beogr., 10, 121–2.Google Scholar
Schierbeck, N. P. (1892). Über Kohlensäure in Ventukel. Skand. Arch. Physiol. 3, 437.CrossRefGoogle Scholar
Schmid, F. (1938). Akute Distomatose und junge Dassellarven bei einem Reh. Dt. tierärztl. Wschr. 46, 257.Google Scholar
Schumacher, W. (1938). Untersuchungen über den Wanderungsweg und die Entwicklung von Fasciola hepatica L. im Endwirt. Z. ParasitKde. 10, 608–43.CrossRefGoogle Scholar
Silverman, P. H. (1954). Studies on the biology of some tapeworms of the genus Taenia 1. Factors affecting hatching and activation of Taeniid ova, and some criteria of their viability. Ann. trop. Med. Parasit. 48, 207–15.CrossRefGoogle Scholar
Sinitsin, D. F. (1914). Neue Tatsachen über die Biologie der Fasciola hepatica L. Zentbl. Bakt. ParasitKde, 74, 280–5.Google Scholar
Smyth, J. D. (1962). Lysis of Echinococcus granulosus by surface active agents in bile and the role of this phenomenon in determining host specificity in helminths. Proc. R. Soc. B, 156, 553–72.Google Scholar
Smyth, J. D. & Haslewood, G. A. D. (1963). The biochemistry of bile as a factor in determining host specificity in intestinal parasites, with particular reference to Echinococcus granulosus. Ann. N.Y. Acad. Sci. 113, 234–60.CrossRefGoogle Scholar
Sobotka, H. (1937). Physiological Chemistry of the Bile, Baltimore: Williams & Wilkins.Google Scholar
Stirewalt, M. A. (1963). Chemical biology of secretions of larval helminths. Ann. N.Y. Acad. Sci. 113, 3653.CrossRefGoogle ScholarPubMed
Susuki, S. (1931). Researches into the life history of Fasciola hepatica and its distribution in Formosa. J. med. Ass. Formosa, 30, 97102.Google Scholar
Tappeiner, H. (1882). Vergleichende Untersuchung der Darmgase. Hoppe-Seyler's Z. physiol. Chem. 6, 432–79.Google Scholar
Tappeiner, H. (1883). Die Gase des Verdauungsschlauches der Pflanzenfresser. Z. biol. 19, 228–79.Google Scholar
Trofimov, V. P. & Alyabeva, L. L. (1959). Fascioliasis of guineapigs. Veterinariya 36, 43.Google Scholar
Turner V. (1961). Fascioloza konja. Vet. Glasn. 15, 389–93.Google Scholar
Turner, A. W. & Hodgetts, V. E. (1955). Buffer systems in the rumen of the sheep. 1. pH and bicarbonate concentration in relationship to pCO2. Aust. J. agric. Res. 6, 115–24.CrossRefGoogle Scholar
Urquhart, G. M. (1954). The rabbit as host in experimental fascioliasis. Expl Parasit. 3, 3844.CrossRefGoogle ScholarPubMed
Vogel, H. (1934). Der Entwicklungszyklus von Opisthorchis felineus (Riv.). Zoologica, Stuttg., 33, 1103.Google Scholar
Washburn, L. E. & Brody, S. (1937). Methane, hydrogen, and carbon dioxide production in the digestive tract of ruminants in relation to the respiratory exchange. Mo Agric. Expt. Sta. Res. Bull. no. 263, 40 pp.Google Scholar
Wikerhauser, T. (1960). A rapid method for determining the viability of Fasciola hepatica metacercariae. Am. J. vet. Res. 21, 895–7.Google ScholarPubMed
Wright, W. R. (1927). Studies on larval trematodes from North Wales. Part 1. Observations on the redia, cercaria and cyst of Fasciola hepatica. Ann. trop. Med. Parasit. 21, 4756.CrossRefGoogle Scholar
Wykoff, D. E. & Lepes, T. J. (1957). Studies on Clonorchis sinensis. I. Observations on the route of migration in the definitive host. Am. J. trop. Med. Hyg. 6, 1061–5.CrossRefGoogle ScholarPubMed
Yogore, M. G., Cabrera, B. J., Araullo, T. P. & Cabalteja, E. F. (1959). Studies on paragonimiasis. VIII. On the excystation of Paragonimus metacercariae. Philipp. J. Sci. 88, 6180.Google Scholar
Yokogawa, S., Cort, W. W. & Yokogawa, M. (1960). Paragonimus and paragonimiasis Expl Parasit. 10, 81205.CrossRefGoogle Scholar