Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-10T15:08:54.992Z Has data issue: false hasContentIssue false

Protein arginine methyltransferases in protozoan parasites

Published online by Cambridge University Press:  06 December 2021

Mario Alberto Rodriguez*
Affiliation:
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
*
Author for correspondence: Mario Alberto Rodriguez, E-mail: marodri@cinvestav.mx

Abstract

Arginine methylation is a post-translational modification involved in gene transcription, signalling pathways, DNA repair, RNA metabolism and splicing, among others, mechanisms that in protozoa parasites may be involved in pathogenicity-related events. This modification is performed by protein arginine methyltransferases (PRMTs), which according to their products are divided into three main types: type I yields monomethylarginine (MMA) and asymmetric dimethylarginine; type II produces MMA and symmetric dimethylarginine; whereas type III catalyses MMA only. Nine PRMTs (PRMT1 to PRMT9) have been characterized in humans, whereas in protozoa parasites, except for Giardia intestinalis, three to eight PRMTs have been identified, where in each group there are at least two enzymes belonging to type I, the majority with higher similarity to human PRMT1, and one of type II, related to human PRMT5. However, the information on the role of most of these enzymes in the parasites biology is limited so far. Here, current knowledge of PRMTs in protozoan parasites is reviewed; these enzymes participate in the cell growth, stress response, stage transitions and virulence of these microorganisms. Thus, PRMTs are attractive targets for developing new therapeutic strategies against these pathogens.

Type
Review Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, A, Dong, Y and Cao, X (2011) Characterization of the PRMT gene family in rice reveals conservation of arginine methylation. PLoS One 6, e22664.CrossRefGoogle ScholarPubMed
Al-Hamashi, AA, Diaz, K and Huang, R (2020) Non-histone arginine methylation by protein arginine methyltransferases. Current Protein & Peptide Science 21, 699712.CrossRefGoogle ScholarPubMed
Alcoforado Diniz, J, Chaves, MM, Vaselek, S, Miserani Magalhães, RD, Ricci-Azevedo, R, de Carvalho, RVH, Lorenzon, LB, Ferreira, TR, Zamboni, D, Walrad, PB, Volf, P, Sacks, DL and Cruz, AK (2021) Protein methyltransferase 7 deficiency in Leishmania major increases neutrophil associated pathology in murine model. PLoS Neglected Tropical Diseases 15, e0009230.CrossRefGoogle ScholarPubMed
Alvar, J, Vélez, ID, Bern, C, Herrero, M, Desjeux, P, Cano, J, Jannin, J and Boer, Md (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7, e35671.CrossRefGoogle ScholarPubMed
Bachand, F (2007) Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryotic Cell 6, 889898.CrossRefGoogle ScholarPubMed
Bauer, I, Lechner, L, Pidroni, A, Petrone, A-M, Merschak, P, Lindner, H, Kremser, L, Graessle, S, Golderer, G, Allipour, S and Brosch, G (2019) Type I and II PRMTs regulate catabolic as well as detoxifying processes in Aspergillus nidulans. Fungal Genetics and Biology 129, 86100.CrossRefGoogle ScholarPubMed
Bedford, MT and Clarke, SG (2009) Protein arginine methylation in mammals: who, what, and why. Molecular Cell 33, 113.CrossRefGoogle Scholar
Bedford, MT and Richard, S (2005) Arginine methylation. Molecular Cell 18, 263272.CrossRefGoogle ScholarPubMed
Binder, M, Ortner, S, Plaimauer, B, Födinger, M, Wiedermann, G, Scheiner, O and Duchêne, M (1995) Sequence and organization of an unusual histone H4 gene in the human parasite Entamoeba histolytica. Molecular and Biochemical Parasitology 71, 243247.CrossRefGoogle ScholarPubMed
Blanc, RS and Richard, S (2017) Arginine methylation: the coming of age. Molecular Cell 65, 824.CrossRefGoogle ScholarPubMed
Borbolla-Vázquez, J, Orozco, E, Betanzos, A and Rodríguez, MA (2015) Entamoeba histolytica: protein arginine transferase 1a methylates arginine residues and potentially modify the H4 histone. Parasites & Vectors 8, 219.CrossRefGoogle ScholarPubMed
Campagnaro, GD, Nay, E, Plevin, MJ, Cruz, AK and Walrad, PB (2021) Arginine methyltransferases as regulators of RNA-binding protein activities in pathogenic kinetoplastids. Frontiers in Molecular Biosciences 8, 692668. doi: 10.3389/fmolb.2021.692668CrossRefGoogle ScholarPubMed
Casadio, F, Lu, X, Pollock, SB, LeRoy, G, Garcia, BA, Muir, TW, Roeder, RG and Allis, CD (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proceedings of the National Academy of Sciences 110, 1489414899.CrossRefGoogle ScholarPubMed
Cázares-Apátiga, J, Medina-Gómez, C, Chávez-Munguía, B, Calixto-Gálvez, M, Orozco, E, Vázquez-Calzada, C, Martínez-Higuera, A and Rodríguez, MA (2017) The Tudor staphylococcal nuclease protein of Entamoeba histolytica participates in transcription regulation and stress response. Frontiers in Cellular and Infection Microbiology 7, 52. doi: 10.3389/fcimb.2017.00052.CrossRefGoogle ScholarPubMed
Cheng, X, Collins, RE and Zhang, X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annual Review of Biophysics and Biomolecular Structure 34, 267294.CrossRefGoogle ScholarPubMed
Cheng, D, Gao, G, Di Lorenzo, A, Jayne, S, Hottiger, MO, Richard, S and Bedford, MT (2020) Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6. Journal of Biological Chemistry 295, 1706017070.CrossRefGoogle ScholarPubMed
Coetzee, N, von Grüning, H, Opperman, D, van der Watt, M, Reader, J and Birkholtz, L-M (2020) Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Scientific Reports 10, 2355.CrossRefGoogle ScholarPubMed
Debler, EW, Jain, K, Warmack, RA, Feng, Y, Clarke, SG, Blobel, G and Stavropoulos, P (2016) A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Proceedings of the National Academy of Sciences 113, 20682073.CrossRefGoogle Scholar
El Bissati, K, Suvorova, ES, Xiao, H, Lucas, O, Upadhya, R, Ma, Y, Hogue Angeletti, R, White, MW, Weiss, LM and Kim, K (2016) Toxoplasma gondii arginine methyltransferase 1 (PRMT1) is necessary for centrosome dynamics during tachyzoite cell division. mBio 7, e02094-15. doi: 10.1128/mBio.02094-15.CrossRefGoogle ScholarPubMed
Fan, Q, Miao, J, Cui, L and Cui, L (2009) Characterization of PRMT1 from Plasmodium falciparum. Biochemical Journal 421, 107118.CrossRefGoogle ScholarPubMed
Feng, Y, Maity, R, Whitelegge, JP, Hadjikyriacou, A, Li, Z, Zurita-Lopez, C, Al-Hadid, Q, Clark, AT, Bedford, MT, Masson, J-Y and Clarke, SG (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. Journal of Biological Chemistry 288, 3701037025.CrossRefGoogle ScholarPubMed
Ferreira, TR, Alves-Ferreira, EVC, Defina, TPA, Walrad, P, Papadopoulou, B and Cruz, AK (2014) Altered expression of an RBP associated arginine methyltransferase 7 in Leishmania major affects parasite infection. Molecular Microbiology 94, 10851102.CrossRefGoogle Scholar
Ferreira, TR, Dowle, AA, Parry, E, Alves-Ferreira, EVC, Hogg, K, Kolokousi, F, Larson, TR, Plevin, MJ, Cruz, AK andWalrad, PB (2020) PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Research 48, 55115526.CrossRefGoogle ScholarPubMed
Fisk, JC and Read, LK (2011) Protein arginine methylation in parasitic protozoa. Eukaryotic Cell 10, 10131022.CrossRefGoogle ScholarPubMed
Fisk, JC, Sayegh, J, Zurita-Lopez, C, Menon, S, Presnyak, V, Clarke, SG and Read, LK (2009) A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. Journal of Biological Chemistry 284, 1159011600.CrossRefGoogle ScholarPubMed
Fisk, JC, Zurita-Lopez, C, Sayegh, J, Tomasello, DL, Clarke, SG and Read, LK (2010) TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. Eukaryotic Cell 9, 866877.CrossRefGoogle ScholarPubMed
Frankel, A and Clarke, S (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Journal of Biological Chemistry 275, 3297432982.CrossRefGoogle ScholarPubMed
Frankel, A, Yadav, N, Lee, J, Branscombe, TL, Clarke, S and Bedford, MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. Journal of Biological Chemistry 277, 35373543.CrossRefGoogle ScholarPubMed
Ganesh, L, Yoshimoto, T, Moorthy, NC, Akahata, W, Boehm, M, Nabel, EG and Nabel, GJ (2006) Protein methyltransferase 2 inhibits NF-κB function and promotes apoptosis. Molecular and Cellular Biology 26, 38643874.CrossRefGoogle ScholarPubMed
Gary, JD and Clarke, S (1998) RNA and protein interactions modulated by protein arginine methylation. Progress in Nucleic Acid Research and Molecular Biology 61, 65131.CrossRefGoogle ScholarPubMed
Guccione, E and Richard, S (2019) The regulation, functions and clinical relevance of arginine methylation. Nature Reviews Molecular Cell Biology 20, 642657.CrossRefGoogle ScholarPubMed
Hadjikyriacou, A and Clarke, SG (2017) Caenorhabditis elegans PRMT-7 and PRMT-9 are evolutionarily conserved protein arginine methyltransferases with distinct substrate specificities. Biochemistry 56, 26122626.CrossRefGoogle ScholarPubMed
Hill, D and Dubey, JP (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clinical Microbiology and Infection 8, 634640.CrossRefGoogle Scholar
Ho, M-C, Wilczek, C, Bonanno, JB, Xing, L, Seznec, J, Matsui, T, Carter, LG, Onikubo, T, Kumar, PR, Chan, MK, Brenowitz, M, Cheng, RH, Reimer, U, Almo, SC and Shechter, D (2013) Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One 8, e57008.CrossRefGoogle ScholarPubMed
Hossain, MJ, Korde, R, Singh, S, Mohmmed, A, Dasaradhi, PVN, Chauhan, VS and Malhotra, P (2008) Tudor domain proteins in protozoan parasites and characterization of Plasmodium falciparum Tudor staphylococcal nuclease. International Journal for Parasitology 38, 513526.CrossRefGoogle ScholarPubMed
Hossain, M, Sharma, S, Korde, R, Kanodia, S, Chugh, M, Rawat, K and Malhotra, P (2013) Organization of Plasmodium falciparum spliceosomal core complex and role of arginine methylation in its assembly. Malaria Journal 12, 333.CrossRefGoogle ScholarPubMed
Hu, H, Qian, K, Ho, M-C and Zheng, YG (2016) Small molecule inhibitors of protein arginine methyltransferases. Expert Opinion on Investigational Drugs 25, 335358.CrossRefGoogle ScholarPubMed
Jain, K, Warmack, RA, Debler, EW, Hadjikyriacou, A, Stavropoulos, P and Clarke, SG (2016) Protein arginine methyltransferase product specificity is mediated by distinct active-site architectures. Journal of Biological Chemistry 291, 1829918308.CrossRefGoogle ScholarPubMed
Jambhekar, A, Dhall, A and Shi, Y (2019) Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology 20, 625641.CrossRefGoogle ScholarPubMed
Jong, RM, Tebeje, SK, Meerstein-Kessel, L, Tadesse, FG, Jore, MM, Stone, W and Bousema, T (2020) Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunological Reviews 293, 190215.CrossRefGoogle ScholarPubMed
Kafková, L, Debler, EW, Fisk, JC, Jain, K, Clarke, SG and Read, LK (2017) The major protein arginine methyltransferase in Trypanosoma brucei functions as an enzyme-prozyme complex. Journal of Biological Chemistry 292, 20892100.CrossRefGoogle ScholarPubMed
Kafková, L, Tu, C, Pazzo, KL, Smith, KP, Debler, EW, Paul, KS, Qu, J and Read, LK (2018) Trypanosoma brucei PRMT1 is a nucleic acid-binding protein with a role in energy metabolism and the starvation stress response. mBio 9. doi: 10.1128/mBio.02430-18.CrossRefGoogle ScholarPubMed
Karkhanis, V, Wang, L, Tae, S, Hu, Y-J, Imbalzano, AN and Sif, S (2012) Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1. Journal of Biological Chemistry 287, 2980129814.CrossRefGoogle ScholarPubMed
Katz, JE, Dlakić, M and Clarke, S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Molecular & Cellular Proteomics 2, 525540.CrossRefGoogle ScholarPubMed
Lanouette, S, Mongeon, V, Figeys, D and Couture, J (2014) The functional diversity of protein lysine methylation. Molecular Systems Biology 10, 724.CrossRefGoogle ScholarPubMed
Lee, J, Sayegh, J, Daniel, J, Clarke, S and Bedford, MT (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. Journal of Biological Chemistry 280, 3289032896.CrossRefGoogle ScholarPubMed
Li, H-T, Gong, T, Zhou, Z, Liu, Y-T, Cao, X, He, Y, Chen, CD and Zhou, J-Q (2015) Yeast Hmt1 catalyses asymmetric dimethylation of histone H3 arginine 2 in vitro. Biochemical Journal 467, 507515.CrossRefGoogle ScholarPubMed
Liu, M, Li, F-X, Li, C-Y, Li, X-C, Chen, L-F, Wu, K, Yang, P-L, Lai, Z-F, Liu, T, Sullivan, WJ, Cui, L and Chen, X-G (2019) Characterization of protein arginine methyltransferase of TgPRMT5 in Toxoplasma gondii. Parasites & Vectors 12, 221.CrossRefGoogle ScholarPubMed
Lott, K, Li, J, Fisk, JC, Wang, H, Aletta, JM, Qu, J and Read, LK (2013) Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular process impacted by arginine methylation. Journal of Proteomics 91, 210225.CrossRefGoogle Scholar
Lott, K, Zhu, L, Fisk, JC, Tomasello, DL and Read, LK (2014) Functional interplay between protein arginine methyltransferases in Trypanosoma brucei. MicrobiologyOpen 3, 595609.CrossRefGoogle ScholarPubMed
Lozano-Amado, D, Herrera-Solorio, AM, Valdés, J, Alemán-Lazarini, L, Almaraz-Barrera, MdJ, Luna-Rivera, E, Vargas, M and Hernández-Rivas, R (2016) Identification of repressive and active epigenetic marks and nuclear bodies in Entamoeba histolytica. Parasites & Vectors 9, 19.CrossRefGoogle ScholarPubMed
McBride, AE, Zurita-Lopez, C, Regis, A, Blum, E, Conboy, A, Elf, S and Clarke, S (2007) Protein arginine methylation in Candida albicans: role in nuclear transport. Eukaryotic Cell 6, 11191129.CrossRefGoogle ScholarPubMed
Medina-Gómez, C, Bolaños, J, Borbolla-Vázquez, J, Munguía-Robledo, S, Orozco, E and Rodríguez, MA (2021) The atypical protein arginine methyltrasferase of Entamoeba histolytica (EhPRMTA) is involved in cell proliferation, heat shock response and in vitro virulence. Experimental Parasitology 222, 108077.CrossRefGoogle ScholarPubMed
Migliori, V, Müller, J, Phalke, S, Low, D, Bezzi, M, Mok, WC, Sahu, SK, Gunaratne, J, Capasso, P, Bassi, C, Cecatiello, V, De Marco, A, Blackstock, W, Kuznetsov, V, Amati, B, Mapelli, M and Guccione, E (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nature Structural & Molecular Biology 19, 136144.CrossRefGoogle ScholarPubMed
Montoya, J and Liesenfeld, O (2004) Toxoplasmosis. The Lancet 363, 19651976.CrossRefGoogle ScholarPubMed
Musiyenko, A, Majumdar, T, Andrews, J, Adams, B and Barik, S (2012) PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA. Cellular Microbiology 14, 882901.CrossRefGoogle ScholarPubMed
Najbauer, J, Johnson, BA, Young, AL and Aswad, DW (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. The Journal of Biological Chemistry 268, 1050110509.CrossRefGoogle ScholarPubMed
Paolantonacci, P, Lawrence, F, Lederer, F and Robert-Gero, M (1986) Protein methylation and protein methylases in Leishmania donovani and Leishmania tropica promastigotes. Molecular and Biochemical Parasitology 21, 4754.CrossRefGoogle ScholarPubMed
Pasternack, DA, Sayegh, J, Clarke, S and Read, LK (2007) Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. Eukaryotic Cell 6, 16651681.CrossRefGoogle ScholarPubMed
Pelletier, M, Xu, Y, Wang, X, Zahariev, S, Pongor, S, Aletta, J and Read, LK (2002) Arginine methylation of a mitochondrial guide RNA binding protein from Trypanosoma brucei. Molecular and Biochemical Parasitology 18, 4959.Google Scholar
Pelletier, M, Pasternack, DA and Read, LK (2005) In vitro and in vivo analysis of the major type I arginine methyltransferase from Trypanosoma brucei. Molecular and Biochemical Parasitology 144, 206217.CrossRefGoogle ScholarPubMed
Pelletier, M, Frainier, AS, Munini, DN, Wiemer, JM, Karpie, AR and Sattora, JJ (2013) Identification of a novel lipin homologue from the parasitic protozoan Trypanosoma brucei. BMC Microbiology 13, 101.CrossRefGoogle ScholarPubMed
Plett, KL, Raposo, AE, Bullivant, S, Anderson, IC, Piller, SC and Plett, JM (2017) Root morphogenic pathways in Eucalyptus grandis are modified by the activity of protein arginine methyltransferases. BMC Plant Biology 17, 62.CrossRefGoogle ScholarPubMed
Rakow, S, Pullamsetti, SS, Bauer, U-M and Bouchard, C (2020) Assaying epigenome functions of PRMTs and their substrates. Methods (San Diego, Calif) 175, 5365.CrossRefGoogle ScholarPubMed
Saksouk, N, Bhatti, MM, Kieffer, S, Smith, AT, Musset, K, Garin, J, Sullivan, WJ, Cesbron-Delauw, M-F and Hakimi, M-A (2005) Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Molecular and Cellular Biology 25, 1030110314.CrossRefGoogle Scholar
Simarro, PP, Cecchi, G, Franco, JR, Paone, M, Diarra, A, Priotto, G, Mattioli, RC and Jannin, JG (2015) Monitoring the progress towards the elimination of gambiense human African trypanosomiasis. PLoS Neglected Tropical Diseases 9, e0003785.CrossRefGoogle ScholarPubMed
Torres-Guerrero, H, Peattie, DA and Meza, I (1991) Chromatin organization in Entamoeba histolytica. Molecular and Biochemical Parasitology 45, 121130.CrossRefGoogle ScholarPubMed
Tripsianes, K, Madl, T, Machyna, M, Fessas, D, Englbrecht, C, Fischer, U, Neugebauer, KM and Sattler, M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nature Structural & Molecular Biology 18, 14141420.CrossRefGoogle ScholarPubMed
Venne, AS, Kollipara, L and Zahedi, RP (2014) The next level of complexity: crosstalk of posttranslational modifications. Proteomics 14, 513524.CrossRefGoogle ScholarPubMed
Walsh, JA (1986) Problems in recognition and diagnosis of amebiasis: estimation of the global magnitude of morbidity and mortality. Clinical Infectious Diseases 8, 228238.CrossRefGoogle ScholarPubMed
Wang, C, Zhu, Y, Chen, J, Li, X, Peng, J, Chen, J, Zou, Y, Zhang, Z, Jin, H, Yang, P, Wu, J, Niu, L, Gong, Q, Teng, M and Yunyu, S (2014 a) Chrystal structure of arginine methyltransferase 6 from Trypanosoma brucei. PLoS One 9, e87267.CrossRefGoogle Scholar
Wang, C, Zhu, Y, Caceres, TB, Liu, L, Peng, J, Wang, J, Chen, J, Chen, X, Zhang, Z, Zuo, X, Gong, Q, Teng, M, Hevel, JM, Wu, J and Shi, Y (2014 b) Structural determinants for the strict monomethylation activity by Trypanosoma brucei protein arginine methyltransferase 7. Structure (London, England: 1993) 22, 756768.CrossRefGoogle ScholarPubMed
Wang, Y-C, Wang, C-W, Lin, W-C, Tsai, Y-J, Chang, C-P, Lee, Y-J, Lin, M-J and Li, C (2017) Identification, chromosomal arrangements and expression analyses of the evolutionarily conserved prmt1 gene in chicken in comparison with its vertebrate paralogue prmt8. PLoS One 12, e0185042.CrossRefGoogle ScholarPubMed
World Health Organization (2020) World Malaria Report 2020: 20 Years of Global Progress and Challenges. Geneva: World Health Organization.Google Scholar
Xu, W (2004) A methylation-mediator complex in hormone signaling. Genes & Development 18, 144156.CrossRefGoogle ScholarPubMed
Yakubu, RR, Simon de Moterri, NC, Nieves, E, Kim, K and Weiss, LM (2017) Comparative monomethylarginine proteomics suggests that protein arginine methyltransferase 1 (PRMT1) is a significant contributor to arginine monomethylation in Toxoplasma gondii. Molecular & Cellular Proteomics 16, 567580.CrossRefGoogle ScholarPubMed
Yang, Y and Bedford, MT (2013) Protein arginine methyltransferases and cancer. Nature Reviews Cancer 13, 3750.CrossRefGoogle ScholarPubMed
Zeeshan, M, Kaur, I, Joy, J, Saini, E, Paul, G, Kaushik, A, Dabral, S, Mohmmed, A, Gupta, D and Malhotra, P (2017) Proteomic identification and analysis of arginine-methylated proteins of Plasmodium falciparum at asexual blood stages. Journal of Proteome Research 16, 368383.CrossRefGoogle ScholarPubMed
Zhang, X and Cheng, X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure (London, England: 1993) 11, 509520.CrossRefGoogle ScholarPubMed
Zhang, J and Zheng, YG (2016) SAM/SAH analogs as versatile tools for SAM-dependent methyltransferases. ACS Chemical Biology 11, 583597.CrossRefGoogle ScholarPubMed
Zhang, X, Zhou, L and Cheng, X (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. The EMBO Journal 19, 35093519.CrossRefGoogle ScholarPubMed
Zhao, Q, Rank, G, Tan, YT, Li, H, Moritz, RL, Simpson, RJ, Cerruti, L, Curtis, DJ, Patel, DJ, Allis, CD, Cunningham, JM and Jane, SM (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nature Structural & Molecular Biology 16, 304311.CrossRefGoogle ScholarPubMed
Zhao, X-X, Zhang, Y-B, Ni, P-L, Wu, Z-L, Yan, Y-C and Li, Y-P (2016) Protein arginine methyltransferase 6 (Prmt6) is essential for early zebrafish development through the direct suppression of gadd45αa stress sensor gene. Journal of Biological Chemistry 291, 402412.CrossRefGoogle ScholarPubMed
Zhou, R, Xie, Y, Hu, H, Hu, G, Patel, VS, Zhang, J, Yu, K, Huang, Y, Jiang, H, Liang, Z, Zheng, YG and Luo, C (2015) Molecular mechanism underlying PRMT1 dimerization for SAM binding and methylase activity. Journal of Chemical Information and Modeling 55, 26232632.CrossRefGoogle ScholarPubMed