Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T21:29:09.883Z Has data issue: false hasContentIssue false

Restriction fragment length polymorphisms within the ribosomal DNA repeat unit of British entomopathogenic nematodes (Rhabditida: Steinernematidae)

Published online by Cambridge University Press:  06 April 2009

A. P. Reid
Affiliation:
Imperial College of Science, Technology and Medicine, Department of Biology, Silwood Park, Ascot, Berks SL5 7PY
W. M. Hominick
Affiliation:
Imperial College of Science, Technology and Medicine, Department of Biology, Silwood Park, Ascot, Berks SL5 7PY

Summary

Genomic DNA extracted from entomopathogenic nematodes isolated from 89 soil samples taken throughout the United Kingdom was hybridized with the ribosomal DNA clone from Caenorhabditis elegans (pCe7). When the DNA was digested with EcoR I and Hind III in a double digest, 5 distinct RFLP (restriction fragment length polymorphism) types were observed. While the prevalence of the 5 types was not equal, no correlation with geographical location, soil type or habitat could be detected. Subsequent hybridizations of total genomic DNA from the various RFLP types divided them into 2 groups. The most prevalent group, identified as Steinernema feltiae ( = bibionis), contained 2 of the RFLP types (Al and A2). The other group contained the remaining 3 RFLP types (B1, B2 and B3). Although similar to S. feltiae ( = bibionis), the members of the B-types can be distinguished from this species on morphological grounds and preliminary crossbreeding experiments have demonstrated that the 2 groups are reproductively isolated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhurst, R. J. (1983). Neoaplectana species: specificity of association with bacteria of the genus Xenorhabdus. Experimental Parasitology 55, 258–63.CrossRefGoogle ScholarPubMed
Akhurst, R. J. & Bedding, R. A. (1978). A simple crossbreeding technique to facilitate species determination in the genus Neoaplectana. Nematologica 24, 328–30.Google Scholar
Bedding, R. A., Molyneux, A. S. & Akhurst, R. J. (1983). Heterorhabditis spp., Neoaplectana spp. and Steinernema kraussei: Interspecific and intraspecific differences in infectivity to insects. Experimental Parasitology 55, 249–57.CrossRefGoogle ScholarPubMed
Bolla, R. I., Weaver, C. & Winter, R. E. K. (1988). Genomic differences among pathotypes of Bursaphalenchus xylophilus. Journal of Nematology 20, 309–16.Google ScholarPubMed
Bovien, P. (1937). Some types of association between nematodes and insects. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjøbenhavn 101, 1115.Google Scholar
Cameron, M. L., Levy, P., Nutman, T., Vanamala, C. R., Narayanan, P. R. & Rajan, T. V. (1988). Use of restriction fragment length polymorphisms (RFLPs) to distinguish between nematodes of pathogenic significance. Parasitology 96, 381–90.CrossRefGoogle ScholarPubMed
Chambers, A. E., Almond, N. M., Knight, M., Simpson, A. J. G. & Parkhouse, R. M. E. (1986). Repetitive DNA as a tool for the identification and comparison of nematode variants: application to Trichinella isolates. Molecular and Biochemical Parasitology 21, 113–20.CrossRefGoogle ScholarPubMed
Curran, J. (1990). Molecular techniques in taxonomy. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 6374. Boca Raton, FL: CRC Press.Google Scholar
Curran, J. & Webster, J. M. (1989). Genotypic analysis of Heterorhabditis isolates from North Carolina, USA. Journal of Nematology 21, 140–7.Google Scholar
Denhardt, D. T. (1966). A membrane-filter technique for the detection of complimentary DNA. Biochemical and Biophysical Research Communications 23, 641–6.CrossRefGoogle Scholar
Fan, X. (1989). Bionomics of British strains of entomopathogenic nematodes (Steinernematidae). Ph.D. thesis, Imperial College of London University, London, England.Google Scholar
Fan, X. & Hominick, W. M. (1991). Effects of low storage temperature on survival and infectivity of two Steinernema species (Nematoda: Steinernematidae). Revue de Nématologie 14, 407–12.Google Scholar
Files, J. C. & Hirsh, D. (1981). Ribosomal DNA of Caenorhabditis elegans. Journal of Molecular Biology 149, 223–40.CrossRefGoogle ScholarPubMed
Filipjev, I. N. (1934). Micellanea Nematologica. 1. Eine neue Art der Gattung Neoaplectana Steiner nebst Bemerkungen über die systematische Stellung der Letzteren. Magazine de Parasitologie de I'Institut Zoologique de l'Académie de l' USSR 4, 229–39.Google Scholar
Hominick, W. M. & Briscoe, B. R. (1990). Occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in British soils. Parasitology 100, 295302.CrossRefGoogle Scholar
Kaya, H. K. (1990). Soil ecology. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 93115. Boca Raton, FL: CRC Press.Google Scholar
Majiwa, P. A. O., Hamers, R., Van Meirvenne, N. & Matthyssens, G. (1986). Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense. Parasitology 93, 291304.CrossRefGoogle ScholarPubMed
McManus, D. P. & Rishi, A. K. (1989). Genetic heterogeneity within Echinococcus granulosus: isolates from different hosts and geographical areas characterized with DNA probes. Parasitology 99, 1729.CrossRefGoogle ScholarPubMed
Molyneux, A. S. (1986). Heterorhabditis spp. and Steinernema ( = Neoaplectana) spp.; temperature, and aspects of behaviour and infectivity. Experimental Parasitology 62, 169–80CrossRefGoogle ScholarPubMed
Poinar, G. O. Jr (1979). Nematodes for Biological Control of Insects. Boca Raton, FL: CRC Press.Google Scholar
Poinar, G. O. Jr (1989). Examination of the neoaplectanid species feltiae Filipjev, carpocapsae Weiser and bibionis Bovien (Nematoda: Rhabditida). Revue de Nématologie 12, 275377.Google Scholar
Reid, A. P. (1991). Recombinant DNA analysis of British entomopathogenic nematodes. Ph.D. thesis, Imperial College of London University, London, England.Google Scholar
Rollinson, D., Walker, T. K. & Simpson, A. J. G. (1986). The application of recombinant DNA technology to the problems of helminth identification. Parasitology 91 (Suppl.), S53–S71.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Timper, P., Kaya, H. K. & Gaugler, R. (1988). Dispersal of the entomogenous nematode Steinernema feltiae (Rhabditida: Steinernematidae) by infected adult insects. Environmental Entomology 17, 546–50.CrossRefGoogle Scholar
Wahl, G. M., Stern, M. & Stark, G. R. (1979). Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization using dextran sulphate. Proceedings of the National Academy of Sciences, USA 76, 3683–7.CrossRefGoogle Scholar
Weiser, J. (1955). Neoaplectana carpocapsae n. sp. (Anguillulata, Steinernematidae), novy cizopasnik housenik obalece jablecného, Carpocapsae pomonella L. Vēstnik Československé Zoologické Společcnosti 19, 4452.Google Scholar