Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T03:52:26.807Z Has data issue: false hasContentIssue false

Strongyloides ratti: transplantation of adults recovered from the small intestine at different days after infection into the colon of naive and infection-primed Wistar rats, and the effect of antioxidant treatment on large intestinal parasitism

Published online by Cambridge University Press:  16 June 2011

Y. SHINTOKU
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
H. TAKAGI
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
T. KADOSAKA
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
F. NAGAOKA
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
S. KONDO
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
M. ITOH
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
S. HONDA
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
E. KIMURA*
Affiliation:
Department of Parasitology, Aichi Medical University, 21 Karimata, Yazako, Nagakute, Aichi-ken 480-1195, Japan
*
*Corresponding author: Tel: +81 561 62 3311. Fax: +81 561 63 3645. E-mail: kimura@aichi-med-u.ac.jp

Summary

Strongyloides ratti (Nagoya strain) is unique in that a portion of adults parasitizing the small intestine withstands ‘worm expulsion’, which starts at around day 8 post-infection (p.i.) by host immunity, and establishes in the large intestine after day 19 p.i. To investigate the mechanism, adults obtained from the small intestine at day 7 or 19 p.i. were transplanted into the colon of infection-primed immune rats. Adults obtained at day 7 p.i. were rejected quickly, whereas those obtained at day 19 p.i. could establish infection. Moreover, the body length and the number of intrauterine eggs increased in the large intestine. In a separate experiment, large intestinal parasitism was abolished by the treatment of host rats with an anti-oxidant, butylated hydroxyanisole. These results indicate that small intestinal adults between days 7 and 19 p.i. acquired the ability to parasitize the large intestine of immune rats, and that free radicals produced by the host may have played a significant role in the process.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bleay, C., Wilkes, C. P., Paterson, S. and Viney, M. E. (2007). Density-dependent immune responses against the gastrointestinal nematode Strongyloides ratti. International Journal for Parasitology 37(13), 15011509. doi:10.1016/j.ijpara.2007.04.023.CrossRefGoogle ScholarPubMed
Fusi, F., Valoti, M., Petkov, G. V., Boev, K. K. and Sgaragli, G. P. (1998). Myorelaxant activity of 2-t-butyl-4-methoxyphenol (BHA) in guinea pig gastric fundus. European Journal of Pharmacology 360(1), 4350. doi:10.1016/S0014-2999(98)00660-8.CrossRefGoogle ScholarPubMed
Gemmill, A. W., Viney, M. E. and Read, A. F. (1997). Host immune status determines sexuality in a parasitic nematode. Evolution 51(2), 393401.CrossRefGoogle Scholar
Grove, D. I. (1982). Strongyloides ratti and S. stercoralis: the effects of thiabendazole, mebendazole, and cambendazole in infected mice. American Journal of Tropical Medicine and Hygiene 31(3), 469476.CrossRefGoogle ScholarPubMed
Gülçin, I., Alici, H. A. and Cesur, M. (2005). Determination of in vitro antioxidant and radical scavenging activities of propofol. Chemical and Pharmaceutical Bulletin 53(3), 281285.CrossRefGoogle ScholarPubMed
Harvey, S. C., Gemmill, A. W., Read, A. F. and Viney, M. E. (2000). The control of morph development in the parasitic nematode Strongyloides ratti. Proceedings of the Royal Society of London, B 267, 20572063. doi: 10.1098/rspb.2000.1249.CrossRefGoogle ScholarPubMed
Harvey, S. C. and Viney, M. E. (2001). Sex determination in the parasitic nematode Strongyloides ratti. Genetics 158(4), 15271533.CrossRefGoogle ScholarPubMed
Kaspar, J. W., Niture, S. K. and Jaiswal, A. K. (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology and Medicine 47(9), 13041309. doi:10.1016/j.freeradbiomed.2009.07.035.CrossRefGoogle ScholarPubMed
Kimura, E., Shintoku, Y., Kadosaka, T., Fujiwara, M., Kondo, S. and Itoh, M. (1999). A second peak of egg excretion in Strongyloides ratti-infected rats: its origin and biological meaning. Parasitology 119, 221226.CrossRefGoogle ScholarPubMed
Korenaga, M., Nawa, Y., Mimori, T. and Tada, I. (1983). Strongyloides ratti: the role of enteral antigenic stimuli by adult worms in the generation of protective immunity in rats. Experimental Parasitology 55(3), 358363.CrossRefGoogle ScholarPubMed
Mimori, T., Nawa, Y., Korenaga, M. and Tada, I. (1982). Strongyloides ratti: mast cell and goblet cell responses in the small intestine of infected rats. Experimental Parasitology 54(3), 366370.CrossRefGoogle ScholarPubMed
Minato, K., Kimura, E., Shintoku, Y. and Uga, S. (2008). Effect of temperature on the development of free-living stages of Strongyloides ratti. Parasitology Research 102, 315319. doi: 10.1007/s00436-007-0773-7.CrossRefGoogle ScholarPubMed
Minematsu, T., Mimori, T., Tanaka, M. and Tada, I. (1989). The effect of fatty acids on the developmental direction of Strongyloides ratti first-stage larvae. Journal of Helminthology 63(2), 102106.CrossRefGoogle ScholarPubMed
Moqbel, R. and McLaren, D. J. (1980). Strongyloides ratti: structural and functional characteristics of normal and immune-damaged worms. Experimental Parasitology 49(2), 139152.CrossRefGoogle ScholarPubMed
Moqbel, R., McLaren, D. J. and Wakelin, D. (1980). Strongyloides ratti: reversibility of immune damage to adult worms. Experimental Parasitology 49(2), 153166.CrossRefGoogle ScholarPubMed
Ogilvie, B. M. (1972). Protective immunity to Nippostrongylus brasiliensis in the rat II. Adaptation by worms. Immunology 22, 111118.Google ScholarPubMed
Onah, D. N. and Nawa, Y. (2000). Mucosal immunity against parasitic gastrointestinal nematodes. The Korean Journal of Parasitology 38(4), 209236.CrossRefGoogle ScholarPubMed
Shintoku, Y., Kimura, E., Kadosaka, T., Hasegawa, H., Kondo, S., Itoh, M. and Islam, M. Z. (2005). Strongyloides ratti infection in the large intestine of wild rats, Rattus norvegicus. Journal of Parasitology 91(5), 11161121.CrossRefGoogle ScholarPubMed
Smith, N. C. and Bryant, C. (1989 a). Free radical generation during primary infections with Nippostrongylus brasiliensis. Parasite Immunology 11(2), 147160.CrossRefGoogle ScholarPubMed
Smith, N. C. and Bryant, C. (1989 b). The effect of antioxidants on the rejection of Nippostrongylus brasiliensis. Parasite Immunology 11(2), 161167.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K. and Bansemir, A. D. (1996). Critical resources that influence habitat selection decisions by gastrointestinal helminth parasites. International Journal for Parasitology 26(5), 483498.CrossRefGoogle ScholarPubMed
Swindle, E. J. and Metcalfe, D. D. (2007). The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunological Reviews 217, 186205. doi:10.1111/j.1600-065X.2007.00513.x.CrossRefGoogle ScholarPubMed
Viney, M. E. and Lok, J. B. (2007). Strongyloides spp. In WormBook (ed. The C. elegans Research Community, WormBook). doi: 10.1895/wormbook.1.141.1.Google Scholar
Viney, M. E., Steer, M. D. and Wilkes, C. P. (2006). The reversibility of constraints on size and fecundity in the parasitic nematode Strongyloides ratti. Parasitology 133, 477483. doi: 10.1017/S003118200600062X.CrossRefGoogle ScholarPubMed
Wilkes, C. P., Thompson, F. J., Gardner, M. P., Paterson, S. and Viney, M. E. (2004). The effect of the host immune response on the parasitic nematode Strongyloides ratti. Parasitology 128, 661669. doi:10.1017/S0031182004005062.CrossRefGoogle ScholarPubMed
Wilkes, C. P. and Viney, M. E. (2004). An attempt to artificially select Strongyloides ratti for resistance to the host immune response. Parasite Immunology 26(2), 6366. doi: 10.1111/j.0141-9838.2004.00683.CrossRefGoogle Scholar
World Health Organization (1986). Some Naturally Occurring and Synthetic Food Components, Furocoumarins and Ultraviolet Radiation. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans Vol. 40. World Health Organization, Geneva, Switzerland.Google Scholar