Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T04:21:44.971Z Has data issue: false hasContentIssue false

Stephanoprora amurensis sp. nov., Echinochasmus milvi Yamaguti, 1939 and E. suifunensis Besprozvannykh, 1991 from the Russian southern Far East and their phylogenetic relationships within the Echinochasmidae Odhner 1910

Published online by Cambridge University Press:  05 August 2020

Y. V. Tatonova*
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok690022, Russia
A. V. Izrailskaia
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok690022, Russia Far Eastern Federal University, School of Biomedicine, Sukhanova Street, 8, Vladivostok690091, Russia
V. V. Besprozvannykh
Affiliation:
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok690022, Russia
*
Author for correspondence: Y. V. Tatonova, E-mail: ytatonova@gmail.com

Abstract

Mature worms of Stephanoprora amurensis sp. nov. were obtained in an experimental study of its life cycle. In the Russian southern Far East, this trematode circulates using freshwater snails Parajuga subtegulata, freshwater fish and birds as the first, second intermediate and final hosts, respectively. Stephanoprora amurensis sp. nov. differs from the well-known representatives of Stephanoprora in a number of morphometric indicators of the developmental stages. The validity of the species was also confirmed by nuclear and mitochondrial DNA markers. In addition, new genetic data were obtained for Echinochasmus suifunensis and Echinochasmus milvi. An analysis of phylogenetic relationships within Echinochasmidae based on the 28S rRNA gene and ITS2 region identified two clusters, one of which combines species of Echinochasmus with 20–22 collar spines and short-tailed cercariae, and the other which includes Stephanoprora spp. and a number of representatives of Echinochasmus with 24 collar spines and long-tailed cercariae. The results of phylogenetic analysis based on ITS2 data show interfamily level of differences between the two clusters and intergeneric differentiation between the three subclusters uniting the species of Stephanoprora and Echinochasmus.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaver, PC (1941) The life history of Echinochasmus donaldsoni n. sp., a trematode (Echinostomidae) from the Pied-billed Grebe. Journal of Parasitology 27, 347355.CrossRefGoogle Scholar
Besprozvannykh, VV (1989) The biology of the trematode Echinochasmus milvi in the conditions of southern Far East. Parasitologiia 2, 237242 (in Russian).Google Scholar
Besprozvannykh, VV (1991) The life-cycle of Echinochasmus suifunensis sp. n. (Trematoda, Echinostomatidae) from Primorsky Region. Parazitologiia 25, 5863 (in Russian).Google Scholar
Besprozvannykh, VV (2009) Life cycles of trematodes Echinochasmus japonicus Tanabe, 1926 and E. beleocephalus (Linstow, 1873) (Echinostomatidae) in Primorsky Region. Parazitologiia 43, 248258 (in Russian).Google Scholar
Besprozvannykh, VV (2011) The life-cycle of trematodes Echinochasmus spinosus Odhner, 1911 (Echinostomatidae) in conditions of Primorsky Region. Parazitologiia 45, 114119 (in Russian).Google Scholar
Besprozvannykh, VV, Rozhkovan, KV and Ermolenko, AV (2017) Stephanoprora chasanensis n. sp. (Digenea: Echinochasmidae): morphology, life cycle, and molecular data. Parasitology International 66, 863870.Google ScholarPubMed
Blouin, MS (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology 32, 527531.CrossRefGoogle ScholarPubMed
Bowles, J, Hope, M, Tiu, WU, Liu, X and McManus, DP (1993) Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Tropica 55, 217229.CrossRefGoogle ScholarPubMed
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) Jmodeltest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Detwiler, JT, Bos, DH and Minchella, DJ (2010) Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution 55, 611620.CrossRefGoogle ScholarPubMed
Katokhin, AV, Shekhovtsov, SV, Konkow, S, Yurlova, NI, Serbina, EA, Vodianitskai, SN, Fedorov KP, Loktev VB, Muratov IV, Ohyama F, Makhneva TV, Pel’tek SE and Mordvinov VA et al. (2008) Assessment of the genetic distinctions of Opisthorchis felineus from O. viverrini and Clonorchis sinensis by ITS2 and CO1 sequences. Doklady Biochemistry and Biophysics 421, 214217.CrossRefGoogle ScholarPubMed
Koga, Y (1952) Studies on the life histories of the trematodes belonging to the family Echinostomatidae I. On the life history of Echinochasmus milvi Yamaguti. Kurume Igakkai Zassi 15, 393405 (in Japanese).Google Scholar
Køie, M (1986) The life-history of Mesorchis denticulatus (Rudolphi, 1802) Dietz, 1909 (Trematoda, Echinostomatidae). Zeitschrift für Parasitenkunde 72, 335343.CrossRefGoogle Scholar
Lavikainen, A, Haukisalmi, V, Lehtinen, MJ, Laaksonen, S, Holmström, S, Isomursu, M, Oksanen, A and Meri, S (2010) Mitochondrial DNA data reveal cryptic species within Taenia krabbei. Parasitology International 59, 290293.CrossRefGoogle ScholarPubMed
Molnár, K, Gibson, DI, Majoros, G, Székely, C, Sándor, D and Cech, G (2016) Malformations of the gill filaments of the ruffe Gymnocephalus cernuus (L.) (Pisces) caused by echinostomatid metacercariae. Journal of Fish Diseases 39, 13571367.CrossRefGoogle Scholar
Oshmarin, PG (1963) Parasitic Worms of Mammals and Birds in the Primorsky Region. Academy of Science of USSR, Moscow (in Russian).Google Scholar
Ostrowski de Núñez, M (2007) Life cycle of Stephanoprora uruguayense (Digenea: Echinostomatidae) in Argentina. Journal of Parasitology 93, 10901096.CrossRefGoogle Scholar
Ostrowski de Núñez, M and Quintana, MG (2008) The life cycle of Stephanoprora aylacostoma n. sp. (Digenea: Echinostomatidae), parasite of the threatened snail Aylacostoma chloroticum (Prosobranchia, Thiaridae), in Argentina. Parasitology Research 102, 647655.CrossRefGoogle Scholar
Ronquist, F and Huelsenbeck, JP (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 15721574.CrossRefGoogle ScholarPubMed
Skrjabin, KI and Bashkirova, EY (1956) Family Echinostomatidae. In Skrjabin, KI (ed.), Trematodes of Man and Animals, Osnovy trematodologii, vol. 12. Moscow: Nauka, pp. 51930 (in Russian).Google Scholar
Stanevičiūtė, G, Stunžėnas, V and Petkevičiūtė, R (2015) Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis. Comparative Cytogenetics 9, 257270.CrossRefGoogle Scholar
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Tatonova, YV, Besprozvannykh, VV, Katugina, LO, Solodovnik, DA and Nguyen, HM (2020) Morphological and molecular data for highly pathogenic avian parasite Erschoviorchis anuiensis sp. n. and phylogenetic relationships within the Opisthorchiidae (Trematoda). Parasitology International 75, 102055.CrossRefGoogle Scholar
Tkach, V, Pawlowski, J and Mariaux, J (2000) Phylogenetic analysis of the suborder plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. International Journal for Parasitology 30, 8393.CrossRefGoogle ScholarPubMed
Tkach, V, Pawlowski, J, Mariaux, J and Swiderski, Z (2001) Molecular phylogeny of the suborder Plagiorchiata and its position in the system of Digenea. In Littlewood, DTJ and Bray, RA (eds), Interrelationships of the Platyhelminthes. London: Taylor and Francis, pp. 186193.Google Scholar
Tkach, VV, Kudlai, O and Kostadinova, A (2016) Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology 46, 171185.CrossRefGoogle Scholar
Truett, GE, Heeger, P, Mynatt, RL, Truett, AA, Walker, JA and Warman, ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29, 5254.CrossRefGoogle Scholar
Vilas, R, Criscione, CD and Blouin, MS (2005) A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131, 839846.CrossRefGoogle ScholarPubMed
Yamaguti, S (1939) Studies on the helminth fauna of Japan. Part 25. Trematodes of birds, IV. Japanese Journal of Zoology 8, 211230.Google Scholar