Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T23:58:21.089Z Has data issue: false hasContentIssue false

Trypanosoma brucei brucei: differences in the nuclear chromatin of bloodstream forms and procyclic culture forms

Published online by Cambridge University Press:  06 April 2009

W. Schlimme
Affiliation:
Swiss Tropical Institute, Postfach CH-4402, Basel, Switzerland
M. Burri
Affiliation:
Swiss Tropical Institute, Postfach CH-4402, Basel, Switzerland
K. Bender
Affiliation:
Swiss Tropical Institute, Postfach CH-4402, Basel, Switzerland
B. Betschart
Affiliation:
Swiss Tropical Institute, Postfach CH-4402, Basel, Switzerland
H. Hecker
Affiliation:
Swiss Tropical Institute, Postfach CH-4402, Basel, Switzerland

Summary

Nucleosome filaments of two stages of the life-cycle of Trypanosoma brucei brucei, namely bloodstream forms and procyclic culture forms, were investigated by electron microscopy. Chromatin of bloodstream forms showed a salt-dependent condensation. The level of condensation was higher than that shown by chromatin from procyclic culture forms, but 30 nm fibres as formed in rat liver chromatin preparations were not found. Analysis of histones provided new evidence for the existence of H1-like proteins, which comigrated in the region of the core histones in SDS–PAGE and in front of the core histones in Triton acid urea gels. Differences were found between the H1-like proteins of the two trypanosome stages as well as between the core histones in their amount, number of bands and banding pattern. It can be concluded that T. b. brucei contains a full set of histones, including H1-like proteins, and that the poor condensation of its chromatin is not due to the absence of H1, but most probably due to histone–DNA interaction being weak. It is obvious that structural and functional differences of the chromatin exist not only between T. b. brucei and higher eukaryotes, but also between various stages of the life-cycle of the parasite. It is therefore not adequate to investigate the chromatin only of the procyclic culture forms as a model for all stages of the life-cycle of T. b. brucei.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfageme, C. R., Zweidler, A., Mahowald, A. & Cohen, L. H. (1974). Histones of Drosophila embryos. Journal of Biological Chemistry 249, 3729–36.CrossRefGoogle ScholarPubMed
Allan, J., Hartman, P. G., Crane-Robinson, C. & Aviles, F. X. (1980). The structure of histone HI and its location in chromatin. Nature, London 288, 675–9.CrossRefGoogle Scholar
Bender, K. (1991). Biochemical and structural aspects of the nuclear chromatin of procyclic Trypanosoma brucei brucei. Ph.D. thesis, University of Basel.Google Scholar
Bender, K., Betschart, B., Schaller, J., Kämpfer, U. & Hecker, H. (1992 a). Biochemical properties of histone-like proteins of procyclic Trypanosoma brucei brucei. Acta Tropica 50, 169–84.CrossRefGoogle Scholar
Bender, K., Betschart, B., Schaller, J., Kämpfer, U. & Hecker, H. (1992 b). Sequence differences between histones of procyclic Trypanosoma brucei brucei and higher eukaryotes. Parasitology 105, 97104.CrossRefGoogle ScholarPubMed
Bender, K., Betschart, B. & Hecker, H. (1992 c). Histone–DNA interactions in the chromatin of procyclic Trypanosoma brucei brucei. Parasitology Research 87, 495500.CrossRefGoogle Scholar
Bender, K., Betschart, B., Marion, C., Michalon, P. & Hecker, H. (1992 d). Structural differences between the chromatin of procyclic Trypanosoma brucei brucei and higher eukaryotes as probed by immobilized trypsin. Acta Tropica 52, 6978.CrossRefGoogle ScholarPubMed
Brun, R. & Schönenberger, M. (1979). Cultivation and in vitro cloning of Trypanosoma brucei in a semi-defined medium. Acta Tropica 36, 289–92.Google Scholar
Duhamel, R. C., Meezan, E. & Brendel, K. (1980). Metachromatic staining with Coomassie-Brilliant-Blue R-250 of the proline-rich calf thymus histone H1. Biochimica et Biophysica Acta 626, 432–42.CrossRefGoogle ScholarPubMed
Duschak, V. G. & Cazzulo, J. J. (1990). The histones of the insect trypanosomatid, Crithidia fasciculata. Biochimica et Biophysica Acta 1040, 159–66.CrossRefGoogle ScholarPubMed
Elpidina, E. N., Zaitseva, G. N. & Krasheninnikov, J. A. (1979). Histones from Trypanosoma lewisi nuclei. Biokhimiya 44, 1830–41.Google ScholarPubMed
Hamm, B., Schindler, A., Mecke, D. & Duszenko, D. (1990). Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture. Molecular and Biochemical Parasitology 40, 1322.CrossRefGoogle ScholarPubMed
Hardison, R. & Chalkley, R. (1978). Polyacrylamide gel electrophoretic fractionation of histones. Methods in Cell Biology 17, 235–51.CrossRefGoogle ScholarPubMed
Hayashi, T., Hayashi, H. & Iwai, K. (1987). Tetrahymena histone H1. Isolation and amino acid sequence lacking the central hydrophobic domain conserved in other H1 histones. Journal of Biochemistry 102, 369–76.CrossRefGoogle ScholarPubMed
Hecker, H. & Gander, E. S. (1985). The compaction pattern of the chromatin of trypanosomes. Biology of the Cell 53, 199208.CrossRefGoogle ScholarPubMed
Hecker, H., Bender, K., Betschart, B. & Modespacher, U. P. (1989). Instability of the nuclear chromatin of procyclic Trypanosoma brucei brucei. Molecular and Biochemical Parasitology 37, 225–34.CrossRefGoogle ScholarPubMed
Hewish, D. R. & Burgoyne, L. A. (1973). Chromatin substructure. The digest of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochemical and Biophysical Research Communication 52, 504–10.CrossRefGoogle Scholar
Johmann, C. A. & Gorovsky, M. A. (1976). Purification and characterisation of histones associated with the macronucleus of Tetrahymena. Biochemistry 15, 1249–56.CrossRefGoogle ScholarPubMed
Johns, E. W. (1982). Chapter 1. In The HMG Chromosomal Proteins (ed. Johns, E. W.), pp. 17. New York: Academic Press.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-Cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Lumsden, W. H. R. & Evans, D. A. (1976). Biology of the Kinetoplastida, Vol. I. New York: Academic Press.Google Scholar
Marion, C., Martinage, A., Tirard, A., Roux, B., Daune, M. & Mazen, A. (1985). Histone phosphorylation in native chromatin induces local structural changes as probed by electric birefringence. Journal of Molecular Biology 186, 367–79.CrossRefGoogle ScholarPubMed
Noll, H. (1969). An automatic high-resolution gradient analyzing system. Analytical Biochemistry 27, 130–49.CrossRefGoogle ScholarPubMed
Sambrook, J., Maniatis, P. T. & Fritsch, E. F. (1989). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Sanders, C. (1977). A method for the fractionation of the high-mobility group non-histone proteins. Biochemical and Biophysical Research Communications 78, 1034–42.CrossRefGoogle Scholar
Schägger, H. & Von Jagow, G. (1987). Tricine–sodium–dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from I to 100 kDa. Analytical Biochemistry 166, 368–79.CrossRefGoogle Scholar
Shapiro, S. Z. & Doxsey, S. J. (1982). Purification of nuclei from a flagellate protozoan, Trypanosoma brucei. Analytical Biochemistry 127, 112–15.CrossRefGoogle ScholarPubMed
Simpson, R. T. (1981). Modulation of nucleosome structure by histone subtypes in sea urchin embryos. Proceedings of the National Academy of Sciences, USA 78, 6803–7.CrossRefGoogle ScholarPubMed
Spiker, S., Key, J. L. & Wakim, B. (1976). Identification and fractionation of plant histones. Archives of Biochemistry and Biophysics 176, 510–18.CrossRefGoogle ScholarPubMed
Stein, A. & Bina, M. (1984). A model chromatin assembly system: factors affecting nucleosome spacing. Journal of Molecular Biology 178, 341–63.CrossRefGoogle Scholar
Telford, D. J. & Stewart, B. W. (1989). Micrococcal nuclease: its specificity and use for chromatin analysis. International Journal of Biochemistry 21, 127–37.CrossRefGoogle ScholarPubMed
Thoma, F., Koller, TH. & Klug, A. (1979). Involvement of histone H1 in the organization of the nucleosome and the salt-dependent superstructures of chromatin. Journal of Cell Biology 83, 403–24.CrossRefGoogle ScholarPubMed
Thoma, F. & Koller, TH. (1981). Unravelled nucleosomes, nucleosome beads and higher-order structures of chromatin: influence of non-histone components and histone H1. Journal of Molecular Biology 149, 709–33.CrossRefGoogle ScholarPubMed
Toro, G. C. & Galanti, N. (1988). H1 histone and histone variants in Trypanosoma cruzi. Experimental Cell Research 174, 1624.CrossRefGoogle ScholarPubMed
Toro, G. C. & Galanti, N. (1990). Trypanosoma cruzi histones. Further characterization and comparison with higher eukaryotes. Biochemistry International 21, 481–90.Google ScholarPubMed
Toro, G. C., Wernstedt, C., Medina, C., Jaramillo, N., Hellmann, U. & Galanti, N. (1992). Extremely divergent histone-H4 sequence from Trypanosoma cruzi–evolutionary implications. Journal of Cellular Biochemistry 49, 266–71.CrossRefGoogle ScholarPubMed
Van Holde, K. E. (1989). Chromatin. In Springer Series in Molecular Biology (ed. Rich, A.), pp. 168–80 and pp. 317–43. New York: Springer Verlag.Google Scholar
Vickerman, K. & Preston, T. M. (1970). Spindle microtubules in the dividing nuclei of trypanosomes. Journal of Cell Science 6, 365–83.CrossRefGoogle ScholarPubMed
Yager, T. D., McMurray, T. & Van Holde, K. E. (1989). Salt-induced release of DNA from nucleosome core particles. Biochemistry 28, 2271–81.CrossRefGoogle ScholarPubMed