Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T13:15:32.887Z Has data issue: false hasContentIssue false

Ultrastructural studies on the cellular response of fish hosts following experimental infection with the plerocercoid of Ligula intestinalis (Cestoda: Pseudophyllidea)

Published online by Cambridge University Press:  06 April 2009

D. Hoole
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG

Summary

With the exception of gudgeon (Gobio gobio) infection of cyprinid fish with the plerocercoid of Ligula intestinalis is associated with a host-tissue response. The nature and specificity of this response has been investigated using transplantation techniques. In roach there is an intense cellular response to implanted Sepharose, Spurr's resin and L. intestinalis, irrespective of donor host species. However, tegument damage only occurs in gudgeon-Ligula and cultured ro&ch-Ligula which has been exposed to gudgeon-plasma. L1 and L2 cell types predominate within the cellular response. Once the host leucocytes have breached the tegument, they migrate over the basal lamina and penetrate into the sub-tegumental region. In gudgeon an intense cellular attack occurs against Sepharose, Spurr's resin, ro&ch-Ligula and cultured gudgeon-Ligula which had been implanted directly or exposed to roach plasma. Tegument damage only occurs in the latter. In contrast, neither direct implantation of gudgeon-Ligula nor cultured roach-Ligula which has been exposed to gudgeon plasma evokes a cellular response. It is suggested that in these two instances, as in natural infections of gudgeon, protective host proteins may be absorbed onto the surface of the parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arme, C. (1968). Effects of the plerocercoid larva of a pseudophyllidean cestode, Ligula intestinalis, on the pituitary gland and gonads of its host. Biological Bulletin, Marine Biological Laboratory, Woods Hole, Mass. 134, 1525.Google Scholar
Arme, C. (1975). Tapeworm-host interactions. In Symbiosis (ed. Jennings, D. H. and Lee, D. L.), pp. 505–32, Cambridge: Cambridge University Press.Google Scholar
Arme, C. & Owen, R. W. (1968). Occurrence and pathology of Ligula intestinalis infections in British fishes. Journal of Parasitology 54, 272–80.Google Scholar
Arme, C. & Owen, R. W. (1970). Observations on a tissue response within the body cavity of fish infected with the plerocercoid larvae of Ligula intestinalis (L.) (Cestoda: Pseudophyllidea). Journal of Fish Biology 2, 35–7.Google Scholar
Barber, D. L., Westermann, J. E. M. & White, M. G. (1981). The blood cells of the Antarctic icefish Chaenocephalus aceratus Lönnberg: light and electron microscopic observations. Journal of Fish Biology 19, 1128.Google Scholar
Bennett, C. E., Hughes, D. L. & Harness, E. (1980). Fasciola hepatica: changes in tegument during killing of adult flukes surgically transferred to sensitized rats. Parasite Immunology 2, 3955.CrossRefGoogle Scholar
Bielek, E. (1979). Electron microscopical studies of blood cells in teleosts II. Thrombocytes. Zoologische Jahrbucher (Anatomie) 101, 1926.Google Scholar
Bråten, T. (1966). Host specificity in Schistocephalus solidus. Parasitology 56, 657–64.Google Scholar
Cannon, M. S., Mollenhauer, H. H., Eurell, T. E., Lewis, D. H., Cannon, A. M. & Tompkins, C. (1980). An ultrastructural study of the leukocytes of the channel catfish, Ictalurus punctatus. Journal of Morphology 164, 123.CrossRefGoogle ScholarPubMed
Ellis, A. E. (1977). The leucocytes of fish: a review. Journal of Fish Biology 11, 453–91.CrossRefGoogle Scholar
Ferguson, H. W. (1976). The ultrastructure of plaice (Pleuronectes platessa) leucocytes. Journal of Fish Biology 8, 139–42.Google Scholar
Fletcher, T. C., White, A. & Baldo, B. A. (1980). Isolation of a phosphorylcholine-containing component from the turbot tapeworm, Bothriocephalus scorpii (Müller), and its reaction to C-reactive protein. Parasite Immunology 2, 237–48.CrossRefGoogle ScholarPubMed
Heath, D. D. & Elsdon-Dew, R. (1972). The in vitro culture of Taenia saginata and Taenia taeniaeformis larvae from the oncosphere, with observations on the role of serum for in vitro culture of larval cestodes. International Journal for Parasitology 2, 119–30.CrossRefGoogle ScholarPubMed
Hoole, D. & Arme, C. (1982). Ultrastructural studies on the cellular response of roach, Rutilus rutilus L., to the plerocercoid larva of the pseudophyllidean cestode, Ligula intestinalis. Journal of Fish Diseases 5, 131–44.CrossRefGoogle Scholar
Hoole, D. & Arme, C. (1983). Ligula intestinalis (Cestoda: Pseudophyllidea): an ultrastructural study on the cellular response of roach fry, Rutilus rutilus. International Journal for Parasitology (in the Press).Google Scholar
Kwa, B. H. & Liew, F. Y. (1978). Studies on the mechanism of long term survival of Taenia taeniaeformis in rats. Journal of Helminthology 52, 16.CrossRefGoogle ScholarPubMed
Lockwood, A. P. M. (1963). Animal Body Fluids and their Regulation. London: Heinemann.Google Scholar
McLaren, D. J., Mackenzie, C. D. & Ramalho-Pinto, F. J. (1977). Ultrastructural observations on the in vitro interactions between rat eosinophils and some parasitic helminths (Schistosoma mansoni, Trichinella spiralis and Nippostrongylus brasilienis). Clinical Experimental Immunology 30, 105–18.Google Scholar
McLaren, D. J., Ramalho-Pinto, F. J. & Smithers, S. R. (1978). Ultrastructural evidence for complement and antibody-dependent damage to schistosomula of Schistosoma mansoni by rat eosinophils in vitro. Parasitology 77, 313–24.CrossRefGoogle ScholarPubMed
Molnar, K. & Berczi, I. (1965). Demonstration of parasite-specific antibodies in fish-blood by agar-gel-diffusion precipitation test. Zeitschrift für Immunitätsforschung und experimentelle Therapie 129, 263–7.Google Scholar
Orr, T. S. C., Hopkins, C. A. & Charles, G. H. (1969). Host specificity and rejection of Schistocephalus solidus. Parasitology 59, 683–90.Google Scholar
Rickard, M. D. (1974). Hypothesis for the long term survival of Taenia pisiformis cysticerci in rabbits. Zeitschrift für Parasitenkunde 44, 203–9.CrossRefGoogle Scholar
Siebert, A. E. Jr., Good, A. H. & Simmons, J. E. (1979). Ultrastructural aspects of the host cellular immune response to Taenia crassiceps metacestodes. International Journal for Parasitology 9, 323–31.CrossRefGoogle ScholarPubMed
Siebert, A. E. Jr., Blitz, R. R., Morita, C. T. & Good, A. H. (1981). Taenia crassiceps: serum and surface immunoglobulins in metacestode infections of mice. Experimental Parasitology 51, 418–30.CrossRefGoogle ScholarPubMed
Sweeting, R. A. (1977). Studies on Ligula intestinalis. Some aspects of the pathology in the second intermediate host. Journal of Fish Biology 10, 4350.CrossRefGoogle Scholar
Varela-Díaz, V. M. & Coltorti, E. A. (1973). The presence of host immunoglobulins in hydatid cyst membranes. Journal of Parasitology 59, 484–8.CrossRefGoogle ScholarPubMed
Weinreb, E. L. (1963). Studies on the fine structure of teleost blood cells I. Peripheral blood. Anatomical Record 147, 219–38.CrossRefGoogle Scholar