Since the work of Dujardin (1845), attempts have been made to decipher acceptable divisions of the trematode groups at higher taxonomic levels, and yet there is still no generally accepted classification of the higher taxa of the Trematoda as there are for other groups of parasitic worms, such as the Monogenea, Cestoda, Nematoda and Acanthocephala. Why is it that workers with a wide knowledge of trematode systematics, such as Dollfus, Stunkard, Manter and especially Yamaguti, have felt unable or unwilling to comment in detail upon the phylogenetic relationships within the group at higher taxonomic levels? One of the main reasons for this state of affairs lies in the fact that, generally speaking, the group is not easily split into major subgroups by obvious, non-homoplasious morphological characters. Early attempts at division, based upon sucker arrangements, i.e. monostome, distome, amphistome and gasterostome, are not satisfactory, as distomes form the vast majority of the Digenea and both monostomes and amphistomes are certainly polyphyletic. In addition, the picture within the Digenea is complicated by the group's complex life-history patterns. Whereas early classifications all tended to be based upon adult (marital) morphology, life-history patterns are given great weight by workers such as Pearson (1972) and Bozhkov (1982). The cercarial morphology is considered the dominant feature in the classification of the group presented by La Rue (1957) and is emphasized in the phylogenetic relationships between the subgroups recognized by Cable (1974). Odening (1961), following an earlier suggestion of Lebour (1912), presented a classification, the major divisions of which were based upon the daughter-parthenita (i.e. the redia or daughter-sporocyst), a stance which he later found untenable (Odening, 1974). Consequently, the wealth of conflicting data from these and other sources has deterred the presentation both of classifications and speculations on evolutionary relationships. The classification of Odening (1974) and the recent cladistic analysis of Brooks, O'Grady & Glen (1985b) utilized data from all of the life-history stages. As the classification of Brooks et al. (1985b) is the most recent, and readily available in English, it must be a serious contender in terms of general acceptance. If it is accepted, then one would hope that this will be on its merits rather than because of its availability or the lack of viable alternatives; but, as discussed below, it is easy to find fault with this classification when it and its premises are examined in detail.