Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T23:11:11.088Z Has data issue: false hasContentIssue false

Atomism and The Illusion of Crisis: The Danger of Applying Kuhnian Categories to Current Particle Physics

Published online by Cambridge University Press:  01 April 2022

R. E. Hendrick
Affiliation:
Department of Physics, Department of Philosophy, St. Bonaventure University
Anthony Murphy
Affiliation:
Department of Physics, Department of Philosophy, St. Bonaventure University

Abstract

This paper responds to a recent claim by Shrader-Frechette that current particle physics, with its essentially atomist paradigm, is in a state of Kuhnian crisis. We respond to Shrader-Frechette's claim in two ways: first, we argue directly against much of the evidence used by Shrader-Frechette as indicators of Kuhnian crisis; second, we question Shrader-Frechette's application of Kuhnian categories to current research in general, pointing out the dangers inherent in such an analysis.

Type
Research Article
Copyright
Copyright © 1981 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abashian, A., et al. (1964), “Search for CP Non-Conservation In Decays”, Physical Review Letters 13: 243–6.CrossRefGoogle Scholar
Aubert, J. J., et al. (1974), “Experimental Observation Of a Heavy Particle J”, Physical Review Letters 33: 1404–5.CrossRefGoogle Scholar
Augustin, J. E., et al. (1974), “Discovery of a Narrow Resonance in e+e−- Annihilation”, Physical Review Letters 33: 1406–8.CrossRefGoogle Scholar
Barker, D. P., et al. (1979), “Discovery of Three-Jet Events and a Test Of Quantum Chromodynamics at Petra”, Physical Review Letters 43: 830833.Google Scholar
Berger, Ch., et al., (1979), “Evidence For Gluon Bremstrahlung in e+e−- Annihilations”, Physics Letters 86B: 418–25.Google Scholar
Bjorken, J. D. and Drell, S. D. (1964), Relativistic Quantum Mechanics. New York: McGraw–Hill.Google Scholar
Brandelik, R., et al. (1979), “Evidence For Planar Events in e+e−- Annihilation at High Energies”, Physics Letters 86B: 243–9.Google Scholar
Chew, G. F. (1962), S-Matrix Theory of Strong Interactions. New York: W. A. Benjamin.Google Scholar
Christenson, J. H., et al. (1964), “Evidence For the 2Π Decay of the Meson”, Physical Review Letters 13: 138140.CrossRefGoogle Scholar
Cutkosky, R. E., et al., (1979), “Pion-nucleon Partial-wave Amplitudes”, Physical Review D20: 2839–53.CrossRefGoogle Scholar
DeRujula, A., Georgi, H., and Glashow, S. (1975), “Hadron Masses In a Gauge Theory”, Physical Review D12: 147–62.CrossRefGoogle Scholar
Drell, S. D. (1978), “When Is a Particle?”, Physics Today 31: 2332.CrossRefGoogle Scholar
Eden, R. J., et al. (1966), The Analytic S-Matrix. Cambridge: Cambridge University Press.Google Scholar
Eichten, E., et al. (1975), “Spectrum of Charmed Quark-Antiquark Bound States”, Physical Review Letters 34: 369372.CrossRefGoogle Scholar
Feinberg, G. and Goldhaber, M. (1963), “The Conservation Laws of Physics”, Scientific American 209 (October): 3645.CrossRefGoogle Scholar
Feinberg, G. (1972), “Philosophical Implications of Contemporary Particle Physics”, Paradigms and Paradoxes, Colodny, R. G. (ed.), Pittsburgh: University of Pittsburgh Press: 3346.Google Scholar
Feynman, R. P. (1961), Quantum Electrodynamics. New York: W. A. Benjamin.Google Scholar
Feynman, R. P., Leighton, R. B., and Sands, M. (1963), Lectures on Physics. Reading, Mass.: Addison-Wesley.Google Scholar
Frauenfelder, H. and Henley, E. M. (1974), Subatomic Physics. Englewood Cliffs, N. J.: Prentice-Hall.Google Scholar
Friedman, J. I. and Kendall, H. W. (1972), “Deep-Inelastic Electron Scattering”, Annual Review of Nuclear Science 22: 203–54.CrossRefGoogle Scholar
Gell-Mann, M. (1964), “A Schematic Model of Baryons and Mesons”, Physics Letters 8: 214–5.CrossRefGoogle Scholar
Glashow, S. L. (1975), “Quarks With Color and Flavor”, Scientific American 233 (October): 3850.CrossRefGoogle Scholar
Glashow, S. L. (1980), “Toward A Unified Theory: Threads in a Tapestry”, Review of Modern Physics 52: 539–43.CrossRefGoogle Scholar
Gunion, J. F. and Willey, R. S. (1975), “Hadronic Spectroscopy For a Linear Quark Containment Potential”, Physical Review D12: 174–86.CrossRefGoogle Scholar
Hanson, G., et al. (1975), “Evidence For Jet Structure In Hadron Production By e+e−- Annihilation”, Physical Review Letters 35: 1609–11.CrossRefGoogle Scholar
Henley, E. M. (1969), “Charge Independence and Charge Symmetry of Nuclear Forces”, Isospin in Nuclear Physics, Wilkinson, D. H. (ed.), Amsterdam: North Holland: 1572.Google Scholar
Herb, S. W., et al. (1977), “Observation of a Dimuon Resonance at 9.5 GeV in 400 GeV Proton-Nucleus Collisions”, Physical Review Letters 39: 252–5.CrossRefGoogle Scholar
Innes, W. R., et al. (1977), “Observation of Structure in the Upsilon Region”, Physical Review Letters 39: 1240–2.Google Scholar
Isgur, N. and Koniuk, R. (1980), “Baryon Decays in a Quark Model With Chromodynamics”, Physical Review D21: 1868–86.CrossRefGoogle Scholar
Jacob, M. and Landshoff, P. (1980), “The Inner Structure of the Proton”, Scientific American 242 (March): 6675.CrossRefGoogle Scholar
Kokkedee, J. J. J. (1969), The Quark Model. New York: Benjamin.Google Scholar
Kuhn, Thomas (1970), “Logic of Discovery or Psychology of Research?”, Criticism and the Growth of Knowledge, Lakatos, I. and Musgrave, A. (eds.), Cambridge: Cambridge University Press.Google Scholar
Kuhn, Thomas (1971), The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
Lederman, L. M. (1978), “The Upsilon Particle”, Scientific American 239 (October): 7280.CrossRefGoogle Scholar
Lee, T. D. and Yang, C. N. (1956), “Question of Parity Conservation in Weak Interactions”, Physical Review 104: 254–8.CrossRefGoogle Scholar
Low, F. E. (1967), Symmetries and Elementary Particles. New York: Gordon and Breach.Google Scholar
MacIntyre, A. (1977), “Epistemological Crises, Dramatic Narrative and the Philosophy of Science”, Monist 60: 453–72.CrossRefGoogle Scholar
Miller, G., et al. (1972), “Inelastic Electron-proton Scattering at Large Momentum Transfers and the Inelastic Structure Functions of the Proton”, Physical Review D5: 528–44.CrossRefGoogle Scholar
Moffeit, K. C. (1977), “Quarks and Particle Production”, Quark Spectroscopy and Hadron Dynamics, Zipf, M. C. (ed.), Stanford Linear Accelerator Center, Stanford: Stanford University: 181217.Google Scholar
Orear, J. (1979), Physics. New York: Macmillan.Google Scholar
Particle Data Group (1980), “Review of Particle Properties”, Review of Modern Physics 52: S1S286.CrossRefGoogle Scholar
Perkins, D. H. (1972), Introduction To High Energy Physics. Reading, Mass.: Addison-Wesley.Google Scholar
Perl, M. L., et al. (1975), “Evidence for Anomalous Lepton Production in e+e−- Annihilation”, Physical Review Letters 35: 1489–92.CrossRefGoogle Scholar
Perl, M. L. et al. (1977), “Review of Heavy Lepton Production in e+e−- Annihilation”, Quark Spectroscopy and Hadron Dynamics, Zipf, M. C. (ed.), Stanford Linear Accelerator Center, Stanford: Stanford University: 147–80.Google Scholar
Perl, M. L., et al. (1980), “The Electron, Muon, and Tau: Are They Truly Elementary Particles?”, The Science Teacher, to be published.Google Scholar
Rosner, J. L. (1979), “Heavy Quarks and New Particles”, AIP Conference Proceedings No. 59, Particles and Fields-1979, Margolis, B. and Stairs, D. G. (eds.), New York: American Institute of Physics: 325–35.Google Scholar
Sakurai, J. J. (1964), Invariance Principles and Elementary Particles. Princeton: Princeton University Press.Google Scholar
Salam, A. (1968), in Elementary Particle Theory: Relativistic Groups and Analyticity (Nobel Symposium No. 8), N. Svartholm (ed.), Stockholm: Almqvist and Wiksell: 367.Google Scholar
Salam, A. (1980), “Gauge Unification of Fundamental Forces”, Reviews of Modern Physics 52: 525–38.CrossRefGoogle Scholar
Shrader-Frechette, K. (1977), “Atomism in Crisis: An Analysis of the Current High Energy Paradigm”, Philosophy of Science 44: 409–40.CrossRefGoogle Scholar
Shrader-Frechette, K. (1980), “Recent Changes in the Concept of Matter: How Does ‘Elementary Particle’ Mean?”, PSA 1980, Asquith, P. D. and Giere, R. N. (eds.), East Lansing: Philosophy of Science Association: 302–16.Google Scholar
Schwinger, J. (1958), Quantum Electrodynamics. New York: Dover.Google Scholar
Schwitters, R. F. (1977), “Fundamental Particles With Charm”, Scientific American 237 (October): 5670.CrossRefGoogle Scholar
t'Hooft, G. (1980), “Gauge Theories of the Forces Between Elementary Particles”, Scientific American 242 (June): 104–38.CrossRefGoogle Scholar
Watkins, J. W. N. (1970), “Against ‘Normal Science',” Criticism and the Growth of Knowledge, Lakatos, I. and Musgrave, A. (eds.), Cambridge: Cambridge University Press.Google Scholar
Weinberg, S. (1967), “A Model of Leptons”, Physical Review Letters 19: 1264–6.CrossRefGoogle Scholar
Weinberg, S. (1980), “Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions”, Review of Modern Physics 52: 515–23.CrossRefGoogle Scholar
Wu, C. S., et al. (1957), “Experimental Test of Parity Conservation in Beta Decay”, Physical Review 105: 1413–5.CrossRefGoogle Scholar
Yang, C. N. (1962), Elementary Particles. Princeton: Princeton University Press.CrossRefGoogle Scholar