Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T14:24:52.106Z Has data issue: false hasContentIssue false

Did Malament Prove the Non-Conventionality of Simultaneity in the Special Theory of Relativity?

Published online by Cambridge University Press:  01 April 2022

Sahotra Sarkar
Affiliation:
Department of Philosophy, University of Texas at Austin
John Stachel
Affiliation:
Department of Physics and Center for Einstein Studies, Boston University

Abstract

David Malament's (1977) well-known result, which is often taken to show the uniqueness of the Poincaré-Einstein convention for defining simultaneity, involves an unwarranted physical assumption: that any simultaneity relation must remain invariant under temporal reflections. Once that assumption is removed, his other criteria for defining simultaneity are also satisfied by membership in the same backward (forward) null cone of the family of such cones with vertices on an inertial path. What is then unique about the Poincaré-Einstein convention is that it is independent of the choice of inertial path in a given inertial frame, confirming a remark in Einstein 1905. Similarly, what is unique about the backward (forward) null cone definition is that it is independent of the state of motion of an observer at a point on the inertial path.

Type
Research Article
Copyright
Copyright © 1999 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Send requests for reprints to either author: Sahotra Sarkar, Department of Philosophy, The University of Texas at Austin, Waggener Hall 316, Austin, TX 78712–1180; John Stachel, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215.

We thank the Max-Planck-Institut für Wissenschaftsgeschichte in Berlin for hospitality during the period when this paper was written. We thank R. Anderson, R. Clifton, D. Malament, H. Stein, and two anonymous referees for comments on earlier drafts of this paper; and M. Janssen for comments on this version.

References

Anderson, R., Vetharaniam, I., and Stedman, G. E. (1998), “Conventionality of Synchronization, Gauge Dependence, and Test Theories of Relativity”, Physics Reports 295: 93180.CrossRefGoogle Scholar
Bondi, H. (1980), Relativity and Common Sense: A New Approach to Einstein. New York: Dover.Google Scholar
Bridgman, P. W. (1962), A Sophisticate's Primer of Relativity. Middletown: Wesleyan University Press.Google Scholar
Einstein, A. (1905), “Zur Elektrodynamik bewegter Körper”, Annalen der Physik 4(20): 891921.10.1002/andp.19053221004CrossRefGoogle Scholar
Ellis, B. and Bowman, P. (1967), “Conventionality in Distant Simultaneity”, Philosophy of Science 34: 116136.10.1086/288136CrossRefGoogle Scholar
Friedman, M. (1973), Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton: Princeton University Press.Google Scholar
Grünbaum, A. (1963), Philosophical Problems of Space and Time. New York: Knopf.Google Scholar
Grünbaum, A. (1969), “Simultaneity by Slow Clock Transport in the Special Theory of Relativity”, Philosophy of Science 36: 543.CrossRefGoogle Scholar
Grünbaum, A. (1973), Philosophical Problems of Space and Time, 2nd. ed. Dordrecht: Reidel.CrossRefGoogle Scholar
Havas, P. (1987), “Simultaneity, Conventionalism, General Covariance, and the Special Theory of Relativity”, General Relativity and Gravitation 19: 435453.CrossRefGoogle Scholar
Hermann, R. (1966), Lie Groups for Physicists. New York: Benjamin.Google Scholar
Janis, A. I. (1969), “Synchronism in Slow Transport of Clocks in Noninertial Frames of Reference”, Philosophy of Science 36: 7481.CrossRefGoogle Scholar
Janis, A. I. (1983), “Simultaneity and Conventionality”, in Cohen, R. S. and Laudan, L. (eds.), Physics, Philosophy and Psychoanalysis. Dordrecht: Reidel, 101110.10.1007/978-94-009-7055-7_5CrossRefGoogle Scholar
Malament, D. (1977), “Causal Theories of Time and the Conventionality of Simultaneity”, Noûs 11: 293300.CrossRefGoogle Scholar
Mehlberg, H. (1935), “Essai sur la théorie causale du temps. I. La théorie causale du temps chez ses principaux representants”, Stud. Philos. (Lemberg) 1: 119260.Google Scholar
Mehlberg, H. (1937), “Essai sur la théorie causale du temps. II. Durée et causalité”, Stud. Philos. (Lemberg) 2: 111230.Google Scholar
Norton, J. (1992), “Philosophy of Space and Time”, In M. H. Salmon, J. Earman, C. Glymour, J. G. Lennox, P. Machamer, J. E. McGuire, J. D. Norton, W. C. Salmon, and K. F. Schaffner, Introduction to the Philosophy of Science. Englewood Cliffs: Prentice Hall, 179226.Google Scholar
Poincaré, H. (1900), “La théorie de Lorentz et la principe de la réaction.” In Bosscha, J. (ed.), Recueil de travaux offerts par les auteurs à H. A. Lorentz, professeur de physique à l'université de Leiden, à l'occasion du 25me anniversaire de son doctorat le 11 décembre 1900. The Hague: Martinus Nijhoff, 252278.Google Scholar
Redhead, M. (1993), “The Conventionality of Simultaneity”, in Earman, J., Janis, J. A. I., Massey, G. J., and Rescher, N. (eds.), Philosophical Problems of the Internal and External Worlds: Essays on the Philosophy of Adolf Grünbaum. Pittsburgh: University of Pittsburgh Press, 103128.10.2307/j.ctt5vkgg6.8CrossRefGoogle Scholar
Reichenbach, H. (1957), Philosophy of Space and Time. New York: Dover.Google Scholar
Robb, A. A. (1914), A Theory of Time and Space. Cambridge: Cambridge University Press.Google Scholar
Sachs, R. G. (1987), The Physics of Time Reversal. Chicago: University of Chicago Press.Google Scholar
Spirtes, P. L. (1981), “Conventionalism and the Philosophy of Henri Poincaré”; Ph. D. Dissertation, Department of the History and Philosophy of Science, University of Pittsburgh.Google Scholar
Stein, H. (1991), “On Relativity Theory and Openness of the Future”, Philosophy of Science 58: 147167.10.1086/289609CrossRefGoogle Scholar
Torretti, R. (1983), Relativity and Geometry. New York: Pergamon.Google Scholar