Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:05:59.521Z Has data issue: false hasContentIssue false

Elemental composition and bacterial incidence in firn-cores at Midre Lovénbreen glacier, Svalbard

Published online by Cambridge University Press:  13 August 2013

Shiv Mohan Singh
Affiliation:
National Centre for Antarctic and Ocean Research, Goa-403804, India. (smsingh@ncaor.org)
Puja Gawas-Sakhalkar
Affiliation:
National Centre for Antarctic and Ocean Research, Goa-403804, India. (smsingh@ncaor.org)
Simantini Naik
Affiliation:
National Centre for Antarctic and Ocean Research, Goa-403804, India. (smsingh@ncaor.org)
Rasik Ravindra
Affiliation:
National Centre for Antarctic and Ocean Research, Goa-403804, India. (smsingh@ncaor.org)
Jagdev Sharma
Affiliation:
National Research Centre for Grapes, Pune-412307, India.
Ajay Kumar Upadhyay
Affiliation:
National Research Centre for Grapes, Pune-412307, India.
Ravindra Uttam Mulik
Affiliation:
National Research Centre for Grapes, Pune-412307, India.
Priyanka Bohare
Affiliation:
National Research Centre for Grapes, Pune-412307, India.

Abstract

The present study was conducted to measure the elemental concentration and bacterial deposition in the firn-cores at the Midre Lovénbreen glacier, Svalbard. Firn-cores up to 1m deep were collected and divided into three subsections. These were subjected to elemental analysis using inductively coupled plasma mass spectroscopy (ICPMS). In all 20 elements were analysed. The crustal enrichment factors calculated for these elements on the basis of Fe values, demonstrate that the elements have derived from both crustal and anthropogenic sources. For certain elements there also exists a possibility of input from sea salt spray. Total bacterial counts in these firn samples ranged from 1.03 × 105 to 3.67 × 105 per ml of meltwater. Culturability of these bacterial cells, in comparison to the total count was very low. At 4°C the maximum culturability was <1.4% of the total count while at 15°C it was still lower (~1%).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abyzov, S.S. 1993. Microorganisms in the Antarctic ice. In: Friedmann, E.I. (editor). Antarctic microbiology. New York: Wiley–Liss: 265295.Google Scholar
Abyzov, S.S., Lipenkov, V.Y., Bobin, N.E. and Kudryashov, B.B.. 1982. Microflora of central Antarctic glacier and methods for sterile ice–core sampling for microbiological analyses. Biology Bulletin of the Academic Sciences of the USSR 9: 304349.Google Scholar
Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.–M., Barbante, C., Boutron, C. and Ferrari, C.. 2007. Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiology Ecology 59 (2): 255264. doi: 10.1111/j.1574–6941.2006.00198.xGoogle Scholar
Balzter, H., Gerard, F.F., George, C.T., Rowland, C.S., Jupp, T.E., McCallum, I., Shvidenko, A., Nilsson, S., Sukhinin, A., Onuchin, A. and Schmullius, C.. 2005. Impact of the Arctic oscillation pattern on interannual forest fire variability in Central Siberia. Geophysical Research Letters 32 (14): L14709.1L14709.4. doi:10.1029/2005GL022526.Google Scholar
Barrie, L.A. 1986. Arctic air pollution: an overview of current knowledge. Atmospheric Environment 20 (4): 643663.Google Scholar
Benson, C. 1987. Arctic air pollution. In: Stonehouse, B. (editor). Studies in polar research. Cambridge: Cambridge Books: 6984.Google Scholar
Boutron, C.F., Candelone, J.–P. and Hong, S.. 1995. Greenland snow and ice cores: unique archives of large–scale pollution of the troposphere of the Northern Hemisphere by lead and other heavy metals. Science of The Total Environment 160–161: 233241.Google Scholar
Christner, B.C., Royston–Bishop, G., Foreman, C.M., Arnold, B.R., Tranter, M., Welch, K.A., Lyons, W.B., Tsapin, A.I., Studinger, M. and Priscu, J.C.. 2006. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnology and Oceanography 51 (6): 24852501.Google Scholar
Cole Dai, J. 2001. Environmental chemistry history from polar ice cores. San Diego: Division of Environmental Chemistry, American Chemical Society (Preprints of extended Abstracts, ‘Environmental Trends’ Symposia): 855–858.Google Scholar
Dancer, S.J., Shears, P. and Platt, D.J.. 1997. Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic. Journal of Applied Microbiology 82 (5): 597609.Google Scholar
Dasch, J.M. and Wolff, T.J.. 1989. Trace inorganic species in precipitation and their potential use in source apportionment studies. Water Air and Soil Pollution 43 (3–4): 401412.Google Scholar
DiGiovanni, F. and Fellin, P.. 2006. Transboundary air pollution. In: Inyang, H.I. and Daniels, J.L. (editors). Environmental monitoring, encyclopedia of life support systems (EOLSS), developed under the auspices of UNESCO. Oxford: Eolss Publishers. (URL: http://www.eolss.net).Google Scholar
Edwards, A., Anesio, A.M., Rassner, S.M., Sattler, B., Hubbard, B., Perkins, W.T., Young, M. and Griffith, G.W.. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. The ISME Journal 5: 150160.Google Scholar
Elster, J. and Benson, E.E.. 2004. Life in the polar terrestrial environment with focus on algae and cyanobacteria. In: Fuller, B.J., Lane, N. and Benson, E.E. (editors). Life in the frozen state. London: CRC Press: 111150.Google Scholar
Gjessing, Y.T. 1977. Episodic variations of snow contamination of an Arctic snowfield. Atmospheric Environment 11 (7): 643647.Google Scholar
Görlach, U. and Boutron, C.F.. 1989. Heavy metals concentrations in surface snow from central Greenland. In: Vernet, J.–P. (editor). Heavy metals in the environment. Norwich, UK: Page Brothers: 2427.Google Scholar
Gosink, J.J., Irgens, R.L. and Staley, J.T.. 1993. Vertical distribution of bacteria in arctic sea ice. FEMS Microbiology Ecology 102 (2): 8590.Google Scholar
Goto–Azuma, K. and Koerner, R.M.. 2001. Ice core studies of anthropogenic sulfate and nitrate trends in the Arctic. Journal of Geophysical Research 106 (D5): 49594969.Google Scholar
Goto–Azuma, K., Kohshima, S., Kameda, T., Takahashi, S., Watanabe, O., Fujii, Y. and Ove Hagen, J.. 1995. An ice core chemistry record from Snøfjellafonna, northwestern Spitsbergen. Annals of Glaciology 21: 213218.Google Scholar
Grannas, A.M. 2011. Chemical composition of snow, ice and glaciers. In: Singh, V.P., Singh, P. and Haritashya, U.K.. (editors). Encyclopedia of snow, ice and glaciers. Dordrecht, The Netherlands: Springer: 133135.Google Scholar
Hagen, J.O., Liestøl, O., Roland, E. and Jørgensen, T.. 1993. Glacier atlas of Svalbard and Jan Mayen. Oslo: Norskpolarinstitutt (Meddelelser 129).Google Scholar
Hammer, O., Harper, D.A.T. and Ryan, P.D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologica Electronica 4 (1): 19.Google Scholar
Heintzenberg, J., Hansson, H.–C. and Lannefors, H.. 1981. The chemical composition of Arctic haze at Ny–Ålesund, Spitsbergen. Tellus 33 (2): 162171.Google Scholar
Hoffmann, A. 2010. Comparative aerosol studies based on multi–wavelength Raman LIDAR at Ny–Ålesund, Spitsbergen. Unpublished Ph.D. dissertation. Potsdam: University of Potsdam.Google Scholar
Isaksson, E., Hermanson, M., Hicks, S., Igarashi, M., Kamiyama, K., Moore, J., Motoyama, H., Muir, D., Pohjola, V., Vaikmäe, R., van de Wal, R.S.W. and Watanabe, O.. 2003. Ice cores from Svalbard—-useful archives of past climate and pollution history. Physics and Chemistry of the Earth 28 (28–32): 12171228.Google Scholar
Isaksson, E., Pohjola, V., Jauhiainen, T., Moore, J., Pinglot, J.–F., Vaikmäe, R., van de Wal, R.S.W., Hagen, J.–O., Ivask, J., Karlöf, L., Martma, T., Meijer, H.A.J., Mulvaney, R., Thomassen, M.P.A. and van den Broeke, M.. 2001. A new ice core record from Lomonosovfonna, Svalbard: viewing the data between 1920–1997 in relation to present climate and environmental conditions. Journal of Glaciology 47 (157): 335345.Google Scholar
Junge, K., Imhoff, F., Staley, T. and Deming, J.W.. 2002. Phylogenetic diversity of numerically important Arctic Sea–ice bacteria cultured at subzero temperature. Microbial Ecology 43 (3): 315328.Google Scholar
Kim, Y., Hatsushika, H., Muskett, R.R. and Yamazaki, K.. 2005. Possible effect of boreal wildfire soot on Arctic sea ice and Alaska glaciers. Atmospheric Environment 39 (19): 35133520.Google Scholar
Kuwae, T. and Hosokawa, Y.. 1999. Determination of abundance and biovolume of bacteria in sediments by dual staining with 49, 6–Diamidino–2–Phenylindole and Acridine Orange: Relationship to dispersion treatment and sediment characteristics. Applied and Environmental Microbiology 65 (8): 34073412.Google Scholar
Lobinski, R., Boutron, C.F., Candelone, J.P., Hong, S., Szpunar–Lobinska, J. and Adams, F.. 1993. The occurrence of organolead compounds in Greenland snow during the 1945–1989 period. In: Allan, R.J. and Nriagu, J.O. (editors). Heavy metals in the environment. Norwich, UK: Page Brothers: 571574.Google Scholar
Moore, J.C., Grinsted, A., Kekonen, T. and Pohjola, V.. 2005. Separation of melting and environmental signals in an ice core with seasonal melt. Geophysical Research Letters, doi: 10.1029/2005GL023039.Google Scholar
Murozumi, M., Chow, T.J. and Patterson, C.. 1969. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta 33 (10): 12471294.Google Scholar
Nriagu, J.O. 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338: 4749.Google Scholar
Nriagu, J.O. 1998. Global atmospheric metal deposition. In: Boutron, C. (editor). From urban air pollution to extra–solar planets. Ulis, Les, France: EDP Sciences: 205226.Google Scholar
Pacyna, J.M., Vitols, V. and Hanssen, J.E.. 1984. Size–differentiated composition of the Arctic aerosol at Ny–Ålesund, Spitsbergen. Atmospheric Environment 18 (11): 24472459.Google Scholar
Pinglot, F., Vaikmäe, R., Kamiyama, K., Igarashi, M., Fritzsche, D., Wilhelms, F., Koerner, R., Henderson, M., Isaksson, E., Winther, J.–G., van de Wal, R.S.W., Fournier, M., Bouisset, P. and Meijer, H.. 2002. Ice cores from Arctic subpolar glaciers: chronology and post depositional processes deduced from radioactivity measurements. Journal of Glaciology 49 (164): 149158.Google Scholar
Reimann, C., Chekushin, V., Bogatyrev, I., Boyd, R., deCaritat, P., Dutter, R., Finne, T.E., Halleraker, J.H., Jæger, Ø., Kashulina, G., Lehto, O., Niskavaara, H., Pavlov, V., Raisanen, M.L., Strand, T. and Volden, T.. 1998. Environmental geochemical atlas of the central Barents region. Trondheim, Norway: Geological Survey of Norway.Google Scholar
Savarino, J., Boutron, C.F. and Jaffrezo, J.–C.. 1994. Short–term variations of Pb, Cd, Zn and Cu in recent Greenland snow. Atmospheric Environment 28 (10): 17311737.Google Scholar
Säwström, C., Mumford, P., Marshall, W., Hodson, A. and Laybourn–Parry, J.. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biology 25 (8): 591596.Google Scholar
Segawa, T., Ushida, K., Narita, H., Kanda, H. and Kohshima, S.. 2010. Bacterial communities in two Antarctic ice cores analyzed by 16S rRNA gene sequencing analysis. Polar Science 4 (2): 215227.Google Scholar
Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E. and Campbell, F.E.. 1967. An estimate of the chemical composition of the Canadian Precambrian shield. Canadian Journal of Earth Sciences 4 (5): 829853.Google Scholar
Shaw, D.M., Dostal, J. and Keays, R.R.. 1976. Additional estimates of continental surface Precambrian shield composition in Canada. Geochimica et Cosmochimica Acta 40 (1): 7383.Google Scholar
Skidmore, M.L., Foght, J.M. and Sharp, M.J.. 2000. Microbial life beneath a high Arctic glacier. Applied and Environmental Microbiology 66 (8): 32143220.Google Scholar
Staebler, R., Toom–Sauntry, D., Barrie, L., Langendörfer, U., Lehrer, E., Li, S.–M. and Dryfhout–Clark, H.. 1999. Physical and chemical characteristics of aerosols at Spitzbergen in the spring of 1996. Journal of Geophysical Research 104 (D5): 55155529.Google Scholar
Shotyk, W., Zheng, J., Krachler, M., Zdanowicz, C., Koerner, R. and Fisher, D.. 2005. Predominance of industrial Pb in recent snow (1994–2004) and ice (1842–1996) from Devon Island, Arctic Canada. Geophysical Research Letters, 32 (21). doi: 10.1029/2005GL023860Google Scholar
Stohl, A., Andrews, E., Burkhart, J.F., Forster, C., Herber, A., Hoch, S.W., Kowal, D., Lunder, C., Mefford, T., Ogren, J.A., Sharma, S., Spichtinger, N., Stebel, K., Stone, R., Ström, J., Tørseth, K., Wehrli, C. and Yttri, K. E.. 2006. Pan–Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004. Journal of Geophysical Research 111: D22214. doi:10.1029/2006JD007216.Google Scholar
Stohl, A., Berg, T., Burkhart, J.F., Fjæraa, A.M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W.W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K. and Yttri, K.E.. 2007. Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics 7: 511534.Google Scholar
Veysseyre, A., Moutard, K., Ferrari, C., van de Velde, K., Barbante, C., Cozzi, G., Capodaglio, G. and Boutron, C.. 2001. Heavy metals in fresh snow collected at different altitudes in the Chamonix and Maurienne valleys, French Alps: initial results. Atmospheric Environment 35 (2): 415425.Google Scholar
Wolff, E.W. and Peel, D.A.. 1988. Concentration of cadmium, copper, lead and zinc in snow from near Dye 3 in South Greenland. Annals of Glaciology 10: 193197.Google Scholar
Wright, A.P. 2005. The impact of meltwater refreezing on the mass balance of a high Arctic glacier. Unpublished Ph.D dissertation. Bristol: Bristol University, School of Geographical Sciences, Bristol Glaciology Centre.Google Scholar
Wright, A., Wadham, J., Siegert, M., Luckman, A. and Kohler, J. 2005. Modelling the impact of superimposed ice on the mass balance of an Arctic glacier under scenarios of future climate change. Annals in Glaciology 42: 277283, doi:10.3189/172756405781813104.Google Scholar
Yevseyev, A.V. and Korzun, A.V.. 1985. On the chemical composition of ice cover on Nordaustlandet. Materialy Glyatsiologicheskikh Issledovaniy 52: 205209 (in Russian).Google Scholar