Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T02:00:04.822Z Has data issue: false hasContentIssue false

Characterization and Rietveld refinements of new dense ceramics Ba3−xSrxTb3−xCexO9 (x = 1 and 1.5) perovskites

Published online by Cambridge University Press:  31 January 2020

Yali Su
Affiliation:
Key Laboratory for Special Functional Materials in Jilin Provincial Universities, Jilin Institute of Chemical Technology, Jilin132022, China College of Chemistry, Jilin University, Changchun130012, China
Dayong Lu*
Affiliation:
Key Laboratory for Special Functional Materials in Jilin Provincial Universities, Jilin Institute of Chemical Technology, Jilin132022, China
Shan Wang
Affiliation:
Key Laboratory for Special Functional Materials in Jilin Provincial Universities, Jilin Institute of Chemical Technology, Jilin132022, China
*
a)Author to whom correspondence should be addressed. Electronic mail: dylu@jlict.edu.cn

Abstract

Ba3−xSrxTb3−xCexO9 (x = 1 and 1.5) ceramics (BSTC) with a relative density of 93% and a grain size distribution of 0.2–3 µm were prepared by the mixed-oxides reaction route. The crystalline structures, microstructures, valence states, and electrical properties of two ceramics were analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and electrical measurements. Rietveld analyses of XRPD patterns show that BSTC1 is indexed as a trigonal structure with the space group R-3c, and BSTC3/2 is indexed as an orthorhombic perovskite structure with the space group Pmcn. The EPR, XPS, and electrical conductivity results confirm that Ce and Tb ions in BSTC exist as Ce4+ and mixed-valence states of Tb4+/Tb3+, respectively. At room temperature, the two BSTC ceramics exhibit a similar semiconducting behavior. The relationships between electrical conductivity and temperature/frequency are provided. The defect chemistry is discussed.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artner, C., and Weil, M. (2019). “Lead(II) oxidotellurates(VI) with double perovskite structures,” J. Solid State Chem. 276, 7586.CrossRefGoogle Scholar
Barison, S., Battagliarin, M., Cavallin, T., Doubova, L., Fabrizio, M., Mortalò, C., Boldrini, S., Malavasic, L., and Gerbasid, R. (2008). “High conductivity and chemical stability of BaCe1−xyZrxYyO3−δ proton conductors prepared by a sol–gel method,” J. Mater. Chem. 18, 51205128.CrossRefGoogle Scholar
Bêche, E., Charvin, P., Perarnau, D., Abanades, S., and Flamant, G. (2008). “Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz),” Surf. Interface Anal. 40, 264267.CrossRefGoogle Scholar
Blanco, G., Pintado, J. M., Bernal, S., Cauqui, M. A., Corchado, M. P., Galtayries, A., Ghijsen, J., Sporken, R., Eickhoff, T., and Drube, W. (2002). “Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component,” Surf. Interface Anal. 34, 120124.CrossRefGoogle Scholar
Braaten, N. A., Grepstadt, J. K., and Raaen, S. (1989). “Effects of thin cerium overlayers on the oxidation of tantalum and aluminium,” Surf. Sci. 222, 499516.CrossRefGoogle Scholar
Cao, Y. P., Shi, F., Xiu, X. W., Sun, H. B., Guo, Y. F., Liu, W. J., and Xue, C. S. (2010). “Synthesies and properties of Tb-doped GaN nanowires,” Inorg. Mater. 46(10), 10961099.CrossRefGoogle Scholar
Chen, J., Chan, H. M., and Harmer, M. P. (1989). “Ordering structure and dielectric properties of undoped and La/Na-doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc. 74, 593598.CrossRefGoogle Scholar
Chen, X. L., Liang, J. K., and Wang, C. (1995). “Effect of high-angle diffraction data on Rietveld structure refinement,” Acta Phys. Sin. (Overseas Ed.) 4, 259261.Google Scholar
Chen, X. L., Bauernfeind, L., and Braun, H. F. (1997). “Na0.5La0.5RuO3: structure and electric properties,” Phys. Rev. B 55(11), 68886894.CrossRefGoogle Scholar
Choi, S. M., Lee, J.-H., An, H., Hong, J., Kim, H., Yoon, K. J., Son, J.-W., Kim, B.-K., Lee, H.-W., and Lee, J.-H. (2014). “Fabrication of anode-supported protonic ceramic fuel cell with Ba(Zr0.85Y0.15)O3−δ–Ba(Ce0.9Y0.1)O3−δ dual-layer electrolyte,” Int. J. Hydrog. Energy 39, 1281212818.CrossRefGoogle Scholar
Dahl, P. I., Haugsrud, R., Lea Lein, H., Grande, T., Norby, T., and Einarsrud, M.-A. (2007). “Synthesis, densification and electrical properties of strontium cerate ceramics,” J. Eur. Ceram. Soc. 27, 44614471.CrossRefGoogle Scholar
Douillard, L., Gautier, M., Thromat, N., Henriot, M., and Guittet, M. J. (1994). “Local electronic structure of Ce-doped Y2O3: an XPS and XAS study,” Phys. Rev. B 49(23), 4351.CrossRefGoogle ScholarPubMed
El Hachmi, A., Tamraoui, Y., Manoun, B., Haloui, R., Elaamrani, M. A., Saadoune, I., Bih, L., and Lazor, P. (2018). “Synthesis and Rietveld refinements of new ceramics Sr2CaFe2WO9 and Sr2PbFe2TeO9 perovskites,” Powder Diffr. 33(2), 134140.CrossRefGoogle Scholar
Fu, Y.-P., and Weng, C.-S. (2014). “Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties,” Ceram. Int. 40, 1079310802.CrossRefGoogle Scholar
Hussain, I., Khan, S. N., Rao, T. N., Kumar, A., and Koo, B. H. (2019). “Structural, magnetic and magnetocaloric properties of double perovskites Ba2−xLaxFeMoO6,” Solid State Sci. doi:10.1016/j.solidstatesciences.2019.105991.CrossRefGoogle Scholar
Ioshiyuki, Y., Sohn, J.-H., Kim, I.-S., Itoh, M., and Nakamura, T. (1992). “Quantum paraelectricity in a perovskite La1/2Na1/2TiO3,” J. Phys. Soc. Jpn. 61(10), 38313832.Google Scholar
Iwahara, H., Asakura, Y., Katahira, K., and Tanaka, N. (2004). “Prospective of hydrogen technology using proton-conducting ceramics,” Solid State Ion. 168, 299310.CrossRefGoogle Scholar
Jaiswal, S. K., Hong, J., Yoon, K. J., Son, J. W., Lee, H. W., and Lee, J. H. (2016). “Optical absorption and XPS studies of (Ba1−xSrx)(Ce0.75Zr0.10Y0.15)O3−δ electrolytes for protonic ceramic fuel cells,” Ceram. Int. 42, 1036610372.CrossRefGoogle Scholar
Kannan, R., Gill, S., Maffei, N., and Thangadurai, V. (2013). “BaCe0.85−xZrxSm0.15O3−δ (0.01 0.3) (BCZS): effect of Zr content in BCZS on chemical stability in CO2 and H2O vapor, and proton conductivity,” J. Electrochem. Soc. 160, 1826.CrossRefGoogle Scholar
Knight, K. S., Haynes, R., Bonanos, N., and Azough, F. (2015). “Thermoelastic and structural properties of ionically conducting cerate perovskites: (II) SrCeO3 between 1273 K and 1723 K,” Dalton Trans. 44(23), 1077310784.CrossRefGoogle ScholarPubMed
Liang, P. (2019). “Co-existence phenomenon of Ce3+/Ce4+ and Tb3+ in Ce/Tb co-doped Zn2(BO3)(OH)0.75F0.25 phosphor: luminescence and energy transfer,” Adv. Powder Technol. 30, 974982.CrossRefGoogle Scholar
Lu, D. (2015). “Self-adjustable site occupations between Ba-site Tb3+ and Ti-site Tb4+ ions in terbium-doped barium titanate ceramics,” Solid State Ion. 276, 98106.CrossRefGoogle Scholar
Lu, D., and Peng, Y. (2016). “Dielectric properties and exploration of self-compensation mode of Tb in BaTiO3 ceramics,” J. Ceram. Soc. Jpn. 124(4), 455459.CrossRefGoogle Scholar
Lu, D., Cui, S., Liu, Q., and Sun, X. (2016a). “Dielectric properties and defect chemistry of barium titanate ceramics co-doped R and Dy ions (R= Eu, Gd, Tb),” Ceram. Int. 42(13), 1436414373.CrossRefGoogle Scholar
Lu, D., Peng, Y., Yu, X., and Sun, X. (2016b). “Dielectric properties and defect chemistry of La and Tb co-doped BaTiO3 ceramics,” J. Alloy. Compd. 681, 128138.CrossRefGoogle Scholar
Lu, D., Yuan, L., Liang, W., and Zhu, Z. (2016c). “Characterization of oxygen vacancy defects in Ba1−xCaxTiO3 insulating ceramics using electron paramagnetic resonance technique,” Jpn. J. Appl. Phys. 55, 011501.CrossRefGoogle Scholar
Lu, D., Gao, X., and Wang, S. (2019). “Abnormal Curie-temperature shift in Ho-doped BaTiO3 ceramics with the self-compensation mode,” Res. Phys. 12, 585591.Google Scholar
Malavasi, L., Ritter, C., and Chiodelli, G. (2008). “Correlation between thermal properties, electrical conductivity and crystal structure in the BaCe0.80Y0.20O2.9 proton conductor,” Chem. Mater. 20, 23432351.CrossRefGoogle Scholar
Martínez-Arias, A., Hungría, A. B., Fernandez-García, M., Iglesias-Juez, A., Conesa, J. C., Mather, G. C., and Munuera, G. (2005). “Cerium–terbium mixed oxides as potential materials for anodes in solid oxide fuel cells,” J. Power Sources 151, 4351.CrossRefGoogle Scholar
Matsumoto, H., Suzuki, T., and Iwahara, H. (1999). “Automatic regulation of hydrogen partial pressure using a proton conducting ceramic based on SrCeO3,” Solid State Ion. 116, 99104.CrossRefGoogle Scholar
Mukundan, R., Davies, P. K., and Worrell, W. L. (2001). “Electrochemical characterization of mixed conducting Ba(Ce0.8−yPryGd0.2)O2.9 cathodes,” J. Electrochem. Soc. 148, 8286.CrossRefGoogle Scholar
Nguyen, L. T., Cava, R. J., and Fry-Petit, A. M. (2019). “Low temperature structural phase transition in the Ba2CaMoO6 perovskite,” J. Solid State Chem. 277, 415421.CrossRefGoogle Scholar
Radenahmad, N., Afif, A., Petra, M. I., Rahman, S. M. H., Eriksson, S., and Azad, A. K. (2016). “High conductivity and high density proton conducting Ba1−xSrxCe0.5Zr0.35Y0.1Sm0.05O3−δ (x = 0.5, 0.7, 0.9, 1.0) perovskites for IT-SOFC,” Int. J. Hydrog. Energy 41, 1183211841.CrossRefGoogle Scholar
Ranlov, J., Lebech, B., and Nielsen, K. (1995). “Neutron diffraction investigation of the atomic defect structure of Y-doped SrCeO3, a high-temperature protonic conductor,” J. Mater. Chem. 5, 743747.CrossRefGoogle Scholar
Ricote, S., Bonanos, N., Lenrick, F., and Wallenberg, R. (2012). “LaCoO3: promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3−δ electrolyte,” J. Power Sources 218, 313319.CrossRefGoogle Scholar
Sahoo, M. P. K., Zhang, Y., and Wang, J. (2016). “Enhancement of ferroelectric polarization in layered BaZrO3/BaTiO3 superlattices,” Phys. Lett. A 380(1–2), 299303.CrossRefGoogle Scholar
Scherban, T., Lee, W.-K., and Nowick, A. S. (1988). “Bulk protonic conduction in Yb-doped SrCeO3 and BaCeO3,” Solid State Ion. 28–30, 585588.CrossRefGoogle Scholar
Schneider, W.-D., Laubschat, C., Nowik, I., and Kaindl, G. (1981). “Shake-up excitations and core-hole screening in Eu systems,” Phys. Rev. B 24, 54225425.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.CrossRefGoogle Scholar
Sharova, N. V., Gorelov, V. P., and Balakireva, V. B. (2005). “Charge transport in BaCe0.85R0.15O3−δ (R = Sm, Pr, Tb) in oxidizing and reducing environment,” Russ. J. Electrochem. 41, 665670.CrossRefGoogle Scholar
Takahashi, H., Baba, Y., Ezaki, K., Okamoto, Y., Shibata, K., Kuroki, K., and Nakano, S. (1991). “Dielectric characteristics of (A1+1/2•A3+1/2)TiO3 ceramics at microwave frequencies,” Jpn. J. Appl. Phys. 30(9), 23392342.CrossRefGoogle Scholar
Tolchard, J., and Grande, T. (2007). “Physicochemical compatibility of SrCeO3 with potential SOFC cathodes,” J. Solid State Chem. 180, 28082815.CrossRefGoogle Scholar
Uchida, H., Maeda, N., and Iwahara, H. (1983). “Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures,” Solid State Ion. 11, 117124.CrossRefGoogle Scholar
Van Den Bossche, J., Neyts, K. A., De Visschere, P., Corlatan, D., Pauwels, H., Vercaemst, R., Fierman, L., Poelma, D., Van Meirhaegh, R. L., Laflere, W. H., and Cardon, F. (1994). “XPS study of TbF3, and TbOF centres in ZnS,” Phys. Stat. Sol. A 146, K67K70.CrossRefGoogle Scholar
Wang, J., Li, L., Campbell, B. J., Lv, Z., Ji, Y., Xue, Y., and Sua, W. (2004). “Structure, thermal expansion and transport properties of BaCe1−xEuxO3−δ oxides,” Mater. Chem. Phys. 86, 150155.CrossRefGoogle Scholar
Wu, J., Li, L., Espinosa, W. T. P., and Haile, S. M. (2004). “Defect chemistry and transport properties of BaxCe0.85M0.15O3−δ,” J. Mater. Res. 19, 23662376.CrossRefGoogle Scholar
Xiong, Z., Hua, Q., Liu, D., Wu, C., Zhou, F., Wang, Y., Jin, J., and Lu, C. (2016). “Influence of partial substitution of iron oxide by titanium oxide on the structure and activity of iron–cerium mixed oxide catalyst for selective catalytic reduction of NOx with NH3,” Fuel 165, 432439.CrossRefGoogle Scholar