Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T10:42:30.030Z Has data issue: false hasContentIssue false

Diffraction studies of order–disorder at high pressures and temperatures

Published online by Cambridge University Press:  01 March 2012

John B. Parise*
Affiliation:
Department of Geosciences and Mineral Physics Institute and Department Chemistry, State University of New York, Stony Brook, New York 11794-2100
Sytle M. Antao
Affiliation:
Department of Geosciences and Mineral Physics Institute, State University of New York, Stony Brook, New York 11794-2100
Charles D. Martin
Affiliation:
Department of Geosciences and Mineral Physics Institute, State University of New York, Stony Brook, New York 11794-2100
Wilson Crichton
Affiliation:
European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble, France
*
a)Author to whom correspondence should be addressed. Electronic mail: john.parise@sunysb.edu

Abstract

Recent developments at synchrotron X-ray beamlines now allow collection of data suitable for structure determination and Rietveld structure refinement at high pressures and temperatures on challenging materials. These include materials, such as dolomite(CaMg(CO3)2) that tends to calcine at high temperatures, and Fe-containing materials, such as the spinel MgFe2O4, which tend to undergo changes in oxidation state. Careful consideration of encapsulation along with the use of radial collimation produced powder diffraction patterns virtually free of parasitic scattering from the cell in the case of large volume high-pressure experiments. These features have been used to study a number of phase transitions, especially those where superior signal-to-noise discrimination is required to distinguish weak ordering reflections. The structures adopted by dolomite, and CaSO4, anhydrite, were determined from 298 to 1466 K at high pressures. Using laser-heated diamond-anvil cells to achieve simultaneous high pressure and temperature conditions, we have observed CaSO4 undergo phase transitions to the monazite type and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts, from an orthorhombic to a monoclinic lattice, to produce the AgMnO4-type structure.

Type
Read Hot X-Rays
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antao, S. M., Hassan, I., Crichton, W., and Parise, J. B. (2003). “Dolomite: cation disordering at 3 GPa and from 25 to 1193 °C,” in AGU Fall Meeting, San Francisco, CA December 812, 2003 (V42A-0338).Google Scholar
Antao, S. M., Mulder, W. H., Hassan, I., Crichton, W., and Parise, J. B., (2004). Am. Mineral. AMMIAY 90, 219228.Google Scholar
Antao, S. M., Hassan, I., and Parise, J. B. (2004). Am. Mineral. AMMIAY (in press).Google Scholar
Borg, I. Y., and Smith, D. K. (1975). Contrib. Mineral. Petrol. CMPEAP 50, 127133.CrossRefGoogle Scholar
Chen, C., Liu, L., Lin, C., and Yang, Y. (2001). J. Phys. Chem. Solids JPCSAW 62, 12931298.Google Scholar
Chen, J., Parise, J. B., Li, R., Weidner, D. J., Vaughan, M., and Martínez-Garcia, D. (1998). The Imaging Plate System Interfaced to the Large-Volume Press at Beamline X17B1 of the National Synchrotron Light Source, in Proceedings of the US–Japan Seminar on “Properties of Earth and Planetary Materials at High Pressure and Temperature,” Maui, Hawaii; edited by Manyani, M. and Yagi, T., AGU Monograph (AGU, Washington, D.C.), pp. 139144.Google Scholar
Chen, J., Weidner, D. J., Vaughan, M. T., Parise, J. B., Zhang, J., and Xu, Y. (2000). “A Combined CCD∕IP Detection System for Monchromatic XRD Studies at High Pressure and Temperature,” in Science and Technology of High Pressure, edited by Manghnani, M. H., Nellis, W. J., and Nicol, M. F. (Universities Press Ltd., Hyderabad, India), pp. 10351038.Google Scholar
Davidson, P. M. (1994). Am. Mineral. AMMIAY 79, 332339.Google Scholar
Davidson, P. M., Symmes, G. H., Cohen, B. A., Reeder, R., and Lindsley, D. H. (1993). Geochim. Cosmochim. Acta GCACAK 10.1016/0016-7037(93)90612-Z 57, 51055109.Google Scholar
Egami, T. and Billinge, S. J. L. (2003). Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Elsevier, Kidlington), p. 316.Google Scholar
Fiquet, G., Guyot, F., and Itie, J. P. (1994). Am. Mineral. AMMIAY 79, 1523.Google Scholar
Goldsmith, J. R., Graf, D. L., Witters, J., and Northrop, D. A. (1962). J. Geol. JGEOAZ 70, 659688.Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). High Press. Res. HPRSEL 14, 235248.CrossRefGoogle Scholar
Hazen, R. M. and Navrotsky, A. (1996). Am. Mineral. AMMIAY 81, 10211035.CrossRefGoogle Scholar
Hazen, R. M. and Yang, H. X. (1999). Am. Mineral. AMMIAY 84, 19561960.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LANR 86-748.Google Scholar
Le Godec, Y., Martinez-Garcia, D., Mezouar, M., Syfosse, G., Itie, J. P., and Besson, J.-M. (2000). Equation of state and order parameters in graphite-like h-BN under high pressure and temperature. Proceedings of AIRAPT-17: Science and Technology of High Pressure. Eds. Manghnani, M. H., Nellis, W. J., and Nicol, M. F. (Universities Press, Hyderabad, India) 925928.Google Scholar
Lin, C. C. and Liu, L. G. (1997). Phys. Chem. Miner. PCMIDU 10.1007/s002690050028 24, 149157.Google Scholar
Luth, R. W. (1999). EOS Trans. Am. Geophys. Union EOSTAJ 80, 350.Google Scholar
Luth, R. W. (2001). Contrib. Mineral. Petrol. CMPEAP 141, 222232.CrossRefGoogle Scholar
Martinez, I., Zhang, J. Z., and Reeder, R. J. (1996). Am. Mineral. AMMIAY 81, 611624.Google Scholar
Méducin, F., Redfern, S. A. T., Le Godec, Y., Stone, H., Tucker, M. G., Dove, M. T., and Marshall, W. G. (2004). Am. Mineral. AMMIAY 89, 981986.Google Scholar
Mezouar, M., Faure, P., Crichton, W., Rambert, N., Sitaud, B., Bauchau, S., and Blattmann, G. (2002). Rev. Sci. Instrum. RSINAK 10.1063/1.1505104 73, 35703574.Google Scholar
Navrotsky, A. (1977). Earth Planet. Sci. Lett. EPSLA2 33, 437442.Google Scholar
Navrotsky, A., Dooley, D., Reeder, R., and Brady, P. (1999). Am. Mineral. AMMIAY 84, 16221626.Google Scholar
O’Neill, H. S. C. and Navrotsky, A. (1984). Am. Mineral. AMMIAY 69, 733753.Google Scholar
Parise, J. B. and Chen, J. (1997). Eur. J. Solid State Inorg. Chem. EJSCE5 34, 809821.Google Scholar
Pistorius, C. W. F. T., Boeyens, J. C. A., and Clark, J. B. (1969). High Temp. - High Press. HTHPAK 1, 4152.Google Scholar
Redfern, S. A. T., Wood, B. J., and Henderson, C. M. B. (1993). Proc. Rudolf Virchow Med. Soc. City N. Y. ZZZZZZ 20, 20992102.Google Scholar
Reeder, R. J. and Wenk, H. R. (1983). Am. Mineral. AMMIAY 68, 769776.Google Scholar
Ross, N. L. and Reeder, R. J. (1992). Am. Mineral. AMMIAY 77, 412421.Google Scholar
Santillan, J., Williams, Q., and Knittle, E. (2003). Geophys. Res. Lett. GPRLAJ 30, article No. 1054.CrossRefGoogle Scholar
Shirasaka, M., Takahashi, E., Nishihara, Y., Matsukage, K., and Kikegawa, T. (2002). Am. Mineral. AMMIAY 87, 922930.Google Scholar
Shirley, R. (2002). The Crysfire 2002 System for Automatic Powder Indexing: User’s Manual (Guildford, Surrey, England).Google Scholar
Stephens, D. R. (1964). J. Geophys. Res. JGREA2 69, 29672979.CrossRefGoogle Scholar
Zhao, Y. S., Parise, J. B., Wang, Y. B., Kusaba, K., Vaughan, M. T., Weidner, D. J., Kikegawa, T., Chen, J., and Shimomura, O. (1994). Am. Mineral. AMMIAY 79, 615621.Google Scholar