Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T05:46:13.942Z Has data issue: false hasContentIssue false

Solid solubility and superconductivity of Fey Te1−x X x (X = Se, S)

Published online by Cambridge University Press:  09 March 2015

Z. N. Guo
Affiliation:
Department of Chemistry, School of Chemical and Biological engineering, University of Science and Technology Beijing, Beijing 100083, China
B. L. Han
Affiliation:
Department of Chemistry, School of Chemical and Biological engineering, University of Science and Technology Beijing, Beijing 100083, China
P. Li
Affiliation:
Department of Chemistry, School of Chemical and Biological engineering, University of Science and Technology Beijing, Beijing 100083, China
H. H. Zhang
Affiliation:
Department of Chemistry, School of Chemical and Biological engineering, University of Science and Technology Beijing, Beijing 100083, China
W. X. Yuan*
Affiliation:
Department of Chemistry, School of Chemical and Biological engineering, University of Science and Technology Beijing, Beijing 100083, China
*
a) Author to whom correspondence should be addressed. Electronic mail: wxyuanwz@163.com

Abstract

In this work, we present a systematic study on the solid solution, lattice parameters and superconductivity on the Fey Te1−x X x (X = Se, S) system. It has been found that the limit of the Te-site doping with Se and S is around 0.5 and 0.15, respectively. The solid solution with the Fe content changing is also measured in this work, and the single-phase region for preparing pure sample is presented. Based on the magnetic susceptibility measurements, we presented a three-dimensional graph for showing the variation of superconducting critical temperature as a function of both the chalcogen and Fe content in Fey Te1−x X x .

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fang, M. H., Pham, H. M., Qian, B., Liu, T. J., Vehstedt, E. K., Liu, Y., Spinu, L., and Mao, Z. Q. (2008). “Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82 ,” Phys. Rev. B, 78, 224503.Google Scholar
Guo, J. G., Jin, S. F., Wang, G., Wang, S. C., Zhu, K. X., Zhou, T. T., He, M., and Chen, X. L. (2010). “Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≥ 1.0),” Phys. Rev. B 82, 180520.Google Scholar
Hsu, F. C., Luo, J. Y., Yeh, K. W., Chen, T. K., Huang, T. W., Wu, P. M., Lee, Y. C., Huang, Y. L., Chu, Y. Y., Yan, D. C., and Wu, M. K. (2008). “Superconductivity in the PbO-type structure α-FeSe,” Proc. Natl. Acad. Sci. USA. 105, 1426214264.CrossRefGoogle ScholarPubMed
Jung, S. G., Lee, N. H., Choi, E. M., Kang, W. N., Lee, S., Hwang, T., and Kin, D. H. (2010). “Fabrication of FeSe1−x superconducting films with bulk properties,” Physica C 470, 19771980.Google Scholar
Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H. (2008). “Iron-based layered superconductor La[O1−xFx] FeAs (x = 0.05–0.12) with T c = 26 K,” J. Am. Chem. Soc. 130, 32963297.Google Scholar
Margadonna, S., Takabayashi, Y., Ohishi, Y., Mizuguchi, Y., Takano, Y., Kagayama, T., Nakagawa, T., Takata, M., and Prassides, K. (2009). “Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (T c = 37 K),” Phys. Rev. B 80, 064506.CrossRefGoogle Scholar
Mizuguchi, Y., Deguchi, K., Tsuda, S., Yamaguchi, and Takano, Y. (2010a). “Moisture-induced superconductivity in FeTe0.8S0.2 ,” Phys. Rev. B 81, 214510.CrossRefGoogle Scholar
Mizuguchi, Y., Deguchi, K., Tsuda, S., Yamaguchi, and Takano, Y. (2010b). “Evolution of superconductivity by oxygen annealing in FeTe0.8S0.2 ,” EPL 90, 57002.Google Scholar
Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., and Takano, Y. (2009a). “Substitution effects on FeSe superconductor,” J. Phys. Soc. Jpn 78, 074712.CrossRefGoogle Scholar
Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., and Takano, Y. (2009b). “Superconductivity in S-substituted FeTe,” Appl. Phys. Lett. 94, 012503.Google Scholar
Okamoto, H., and Tanner, L. E. (1990). “Fe-Te (Iron-Tellurium),” Bull. Alloy Phase Diagr., 11, 4.Google Scholar
Patel, U., Hua, J., Yu, S. H., Avci, S., Xiao, Z. L., Claus, H., Schlueter, J., Vlasko-Vlasov, V. V., Welp, U., and Kwok, W. K. (2009). “Growth and superconductivity of FeSex crystals,” Appl. Phys. Lett. 94, 082508.Google Scholar
Rodriguez-Carvajal, J. (2003). FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Version 2.45 (computer software) (Laboratories Leno Brillouin, CEA-CNRS, Saclay, France).Google Scholar
Sun, L. L., Chen, X. J., Guo, J., Gao, P. W., Huang, Q. Z., Wang, H. D., Fang, M. H., Chen, X. L., Chen, G. F., Wu, Q., Zhang, C., Gu, D. C., Dong, X. L., Wang, L., Yang, K., Li, A. G., Dai, X., Mao, H. K., and Zhao, Z. X. (2012). “Re-emerging superconductivity at 48 kelvin in iron chalcogenides,” Nat. Phys. 483, 6769.Google Scholar
Viennois, R., Gianninim, E., Marel, D., and van der Cerny, R. (2010). “Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe1+xTe1−ySey ,” J. Solid State Chem. 183, 769775.Google Scholar
Yeh, K. W., Huang, T. W., Huang, Y. L., Chen, T. K., Hsu, F. C., Wu, P. M., Lee, Y. C., Chu, Y. T., Chen, C. L., Luo, J. Y., Yan, D. C., and Wu, M. K. (2008). “Tellurium substitution effect on superconductivity of the α-phase iron selenide,” Europhys. Lett. 84, 37002.Google Scholar
Ying, T. P., Chen, X. L., Wang, G., Jin, S. F., Lai, X. F., Zhou, T. T., Zhang, H., Shen, S. J., and Wang, W. Y. (2013). “Superconducting phases in potassium-intercalated iron selenides,” J. Am. Chem. Soc. 135, 29512954.Google Scholar
Zajdel, P., Hsieh, P., Rodriguez, E. E., Butch, N. P., Magill, J. D., Paglione, J., Zavalij, P., Suchomel, M. R., and Green, M. A. (2010). “Phase separation and suppression of the structural and magnetic transition in superconducting doped Iron Tellurides, Fe1+xTe1−ySy ,” J. Am. Chem. Soc. 132, 1300013007.Google Scholar