Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T21:51:46.010Z Has data issue: false hasContentIssue false

Status of the reference X-ray powder-diffraction patterns for the serpentine minerals in the PDF database—1997

Published online by Cambridge University Press:  10 January 2013

Fred J. Wicks*
Affiliation:
Earth Sciences Department, Royal Ontario Museum, 100 Queens Park, Toronto, Ontario M5S 2C6, Canada
*
a)Electronic mail: fredw@rom.on.ca

Abstract

A critical examination of the reference X-ray powder-diffraction patterns of the serpentine minerals in the Powder-Diffraction File (PDF) database has revealed an unsettling situation. Most of the patterns in, or previously in, the PDF database are inaccurate, misidentified, or of poor quality. The PDF database is not a dependable tool for identifying the serpentine minerals, and has not been since the mid-1960s. This has serious implications for studies on serpentine minerals that have depended on the PDF database, particularly those by nonmineralogists doing health and environmental studies of chrysotile asbestos. In the current PDF database, lizardite-1T, carlosturanite, some amesite, and possibly some antigorite (but with inappropriate polytype symbols) can be identified. Only one of the many multilayer lizardites can be identified. The current pattern for chrysotile-2Mc1 (clinochrysotile) is of reasonable quality, but not the best, however the earlier patterns still in the database are so problematic that any chrysotile-2Mc1 identification must be considered suspect. Chrysotile-2Oc1 (orthochrysotile), and any mixture of serpentines cannot be identified using the PDF database. Until the reference serpentine patterns are corrected the PDF database cannot be considered a reliable identification tool. High-quality powder-diffraction patterns of the serpentine minerals have been published and can be rapidly introduced into the PDF database.© 2000 International Centre for Diffraction Data.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W. (1969). “Polytypism of trioctahedral 1:1 layer silicates,” Clays Clay Miner. 17, 355371.CrossRefGoogle Scholar
Bailey, S. W. (1988a). “X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite,” Clays Clay Miner. 36, 193213.CrossRefGoogle Scholar
Bailey, S. W. (1988b). “Introduction,” in Hydrous Phyllosilicates (Exclusive of Micas), edited by S. W. Bailey, Reviews in Mineralogy, Vol. 19 (Mineralogical Society of America, Washington, DC), pp. 1–8.Google Scholar
Bailey, S. W. (1988c). “Polytypism of 1:1 layer silicates,” in Hydrous Phyllosilicates (Exclusive of Micas), edited by S. W. Bailey, Reviews in Mineralogy, Vol. 19 (Mineralogical Society of America, Washington, DC), pp. 9–27.CrossRefGoogle Scholar
Bailey, S. W. (1988d). “Structures and compositions of other trioctahedral 1:1 phyllosilicates,” in Hydrous Phyllosilicates (Exclusive of Micas), edited by S. W. Bailey, Reviews in Mineralogy, Vol. 19 (Mineralogical Society of America, Washington, DC), pp. 189–223.CrossRefGoogle Scholar
Bailey, S. W., and Banfield, J. F. (1995). “Derivation and identification of nonstandard serpentine polytypes,” Am. Mineral. 80, 11041115.CrossRefGoogle Scholar
Bailey, S. W., and Tyler, S. A. (1960). “Clay minerals associated with the Lake Superior iron ores,” Econ. Geol. 55, 150175.CrossRefGoogle Scholar
Banfield, J. F., Bailey, S. W., and Barker, W. W. (1994). “Polysomatism, polytypism, defect microstructures, and reaction mechanisms in regularly and randomly interstratified serpentine and chlorite,” Contrib. Mineral. Petrol. 117, 137150.CrossRefGoogle Scholar
Banfield, J. F., Bailey, S. W., Barker, W. W., and Smith, R. C. (1995). “Complex polytypism: Relationships between serpentine structural characteristics and deformation,” Am. Mineral. 80, 11161131.CrossRefGoogle Scholar
Baronnet, A., Mellini, M., and Devouard, B. (1994). “Sectors in polygonal serpentine: A model based on dislocations,” Phys. Chem. Miner. 21, 330343.CrossRefGoogle Scholar
Brindley, G. W., Oughton, B. M., and Youell, R. F. (1951). “The crystal structure of amesite and its thermal decomposition,” Acta Crystallogr. 4, 552557.CrossRefGoogle Scholar
Brindley, G. W., and von Knorring, O. (1954). “An new variety of antigorite (orthoantigorite) from Unst, Shetland Islands,” Am. Mineral. 39, 794804.Google Scholar
Chapman, J. A., and Zussman, J. (1959). “Further electron-optical observations on crystals of antigorite,” Acta Crystallogr. 12, 550552.CrossRefGoogle Scholar
Chisholm, J. E. (1992). “The number of sectors in polygonal serpentine,” Can. Mineral. 30, 355365.Google Scholar
Compagnoni, R., Ferraris, G., and Mellini, M. (1985). “Carlosturanite, a new asbestiform rock-forming silicate from Val Varaita, Italy,” Am. Mineral. 70, 767772.Google Scholar
Cressey, B. (1979). “Electron microscope studies of serpentine textures,” Can. Mineral. 17, 741756.Google Scholar
Cressey, B., and Whittaker, E. J. W. (1993). “Five-fold symmetry in chrysotile asbestos revealed by transmission electron microscopy,” Miner. Mag. 57, 729732.CrossRefGoogle Scholar
Cressey, B., and Zussman, J. (1976). “Electron microscopic studies of serpentinite,” Can. Mineral. 14, 307313.Google Scholar
Dodony, I. (1997). “Theoretical derivation and identification of possible two-layer lizardite polytypes,” in Modular Aspects of Minerals, edited by S. Merlino, EMU Notes in Mineralogy Vol. 1, (European Mineralogical Union, Eotvos Univ. Press, Budapest), pp. 57–80.Google Scholar
Gillery, F. H. (1959). “The X-ray study of synthetic Mg–Al serpentines and chlorites,” Am. Mineral. 44, 143152.Google Scholar
Guggenheim, S., and Eggleton, R. A. (1988). “Crystal chemistry, classification, and identification of modulated layer silicates,” in Hydrous Phyllosilicates (Exclusive of Micas), edited by S. W. Bailey, Reviews in Mineralogy, Vol. 19 (Mineralogical Society of America, Washington, DC), pp. 675–725.Google Scholar
Hall, S. H., Guggenheim, S., Moore, P., and Bailey, S. W. (1976). “The structure of Unst-type 6-layer serpentines,” Can. Mineral. 14, 314321.Google Scholar
Hess, H. H., Smith, R. J., and Dengo, G. (1952). “Antigorite from the vicinity of Caracas, Venezuela,” Am. Mineral. 37, 6875.Google Scholar
Jahanbagloo, I. C., and Zoltai, T. (1968). “The crystal structure of a hexagonal Al-serpentine,” Am. Mineral. 53, 1424.Google Scholar
Jasmund, K., and Sylla, H. M. (1971). “Synthesis of Mg and Ni antigorite,” Contrib. Mineral. Petrol. 34, 8486.CrossRefGoogle Scholar
Jasmund, K., and Sylla, H. M. (1972). “Synthesis of Mg and Ni antigorite: A correction,” Contrib. Mineral. Petrol. 34, 346.CrossRefGoogle Scholar
Krstanović, I., and Pavlović, S. (1964). “X-ray study of chrysotile,” Am. Mineral. 49, 17691771.Google Scholar
Krstanović, I., and Pavlović, S. (1967). “X-ray study of six-layer ortho-serpentine,” Am. Mineral. 52, 871876.Google Scholar
Kunze, G., (1961). “Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für die weitere Serpentin-Forschung,” Fortschr. Mineral. 39, 206324.Google Scholar
Mellini, M. (1982). “The crystal structure of lizardite-1T: Hydrogen bonds and polytypism,” Am. Mineral. 67, 587598.Google Scholar
Mellini, M. (1986). “Chrysotile and polygonal serpentine from the Balangero serpentinite,” Miner. Mag. 50, 301306.CrossRefGoogle Scholar
Mellini, M., Ferraris, G., and Compagnoni, R. (1985). “Carlosturanite: HRTEM evidence of a polysomatic series including serpentine,” Am. Mineral. 70, 773781.Google Scholar
Mellini, M., Trommsdorff, V., and Compagnoni, R. (1987). “Antigorite polysomatism: Behaviour during progressive metamorphism,” Contrib. Mineral. Petrol. 97, 147155.CrossRefGoogle Scholar
Mellini, M., and Zussman, J. (1986). “Carlosturanite (not ‘picrolite’) from Taberg, Sweden,” Miner. Mag. 50, 675679.CrossRefGoogle Scholar
Middleton, A. P., and Whittaker, E. J. W. (1976). “The structure of Povlen-type chrysotile,” Can. Mineral. 14, 301306.Google Scholar
Middleton, A. P., and Whittaker, E. J. W. (1979). “The nature of parachrysotile,” Can. Mineral. 17, 693697.Google Scholar
Mitchell, R. H., and Putnis, A. (1988). “Polygonal serpentine in segregation-textured kimberlites,” Can. Mineral. 26, 991997.Google Scholar
Müller, P. (1963). “6-layer-serpentine vom Piz Lunghim, Maloja, Schweiz,” Neues Jahrb. Mineral., Abh. 100, 101111.Google Scholar
Olsen, E. J. (1961). “Six-layer ortho-hexagonal serpentine from the Labrador Trough,” Am. Mineral. 46, 434438.Google Scholar
Otten, M. T., (1993). “High-resolution transmission electron microscopy of polysomatism and stacking defects in antigorite,” Am. Mineral. 78, 7584.Google Scholar
Oughton, B. M. (1957). “Order-disorder structures in amesite,” Acta Crystallogr. 10, 692694.CrossRefGoogle Scholar
Perkins, R. L., and Harvey, B. W. (1993). “Method for the determination of asbestos in bulk building materials,” EPA Contracts Nos. 68024550 and 68D10009, RTI Project No. 91U-5960-181. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC.Google Scholar
Roy, D. M., and Roy, R. (1954). “An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals,” Am. Mineral. 39, 957975.Google Scholar
Rucklidge, J. C., and Zussman, J. (1965). “The crystal structure of the serpentine mineral lizardite,” Acta Crystallogr. 19, 381389.CrossRefGoogle Scholar
Shirozu, H., and Momoi, H. (1972). “Synthetic Mg-chlorite in relation to natural chlorite,” Mineral. J. 6, 464476.CrossRefGoogle Scholar
Steadman, R. (1964). “The structure of the trioctahedral kaolinite-type silicates,” Acta Crystallogr. 17, 924927.CrossRefGoogle Scholar
Steadman, R., and Nuttall, P. M. (1962). “The crystal structure of amesite,” Acta Crystallogr. 15, 510511.CrossRefGoogle Scholar
Steinfink, H., and Brunton, G. (1956). “The crystal structure of amesite,” Acta Crystallogr. 9, 487492.CrossRefGoogle Scholar
Uehara, S., and Shirozu, H. (1985). “Variations in chemical composition and structural properties of antigorites,” Mineralogical Journal of Japan 12, 299318.CrossRefGoogle Scholar
Veblen, D. R. (1980). “Anthophyllite asbestos: Microstructures, intergrown sheet silicates, and mechanisms of fiber formation,” Am. Mineral. 65, 10751086.Google Scholar
Veblen, D. R., and Buseck, P. R. (1981). “Hydrous pyriboles and sheet silicates in pyroxenes and uralites: Intergrowth microstructures and reaction mechanisms,” Am. Mineral. 66, 11071134.Google Scholar
Whittaker, E. J. W., and Zussman, J. (1956). “The characterization of serpentine minerals by X-ray diffraction,” Miner. Mag. 31, 107126.Google Scholar
Wicks, F. J. (1986). “Lizardite and its parent enstatite: A study by X-ray diffraction and transmission electron microscopy,” Can. Mineral. 24, 775788.Google Scholar
Wicks, F. J. and O’Hanley, D. S. (1988). “Serpentine minerals: Structures and petrology,” in Hydrous Phyllosilicates (Exclusive of Micas), edited by S. W. Bailey, Reviews in Mineralogy, Vol. 19 (Mineralogical Society of America, Washington, DC), pp. 91–167.Google Scholar
Wicks, F. J., Corbeil, M.-C., Back, M. E., and Ramik, R. A. (1995). “Microbeam X-ray diffraction in the analysis of minerals and materials,” Can. Mineral. 33, 313322.Google Scholar
Wicks, F. J., and Whittaker, E. J. W. (1975). “A Reappraisal of the structures of the serpentine minerals,” Can. Mineral. 13, 227243.Google Scholar
Wicks, F. J., and Whittaker, E. J. W. (1977). “Serpentine textures and serpentinization,” Can. Mineral. 15, 459488.Google Scholar
Wicks, F. J., and Zussman, J. (1975). “Microbeam X-ray diffraction patterns of the serpentine minerals,” Can. Mineral. 13, 244258.Google Scholar
Yada, K. (1979). “Microstructures of chrysotile and antigorite by high-resolution electron microscopy,” Can. Mineral. 17, 679691.Google Scholar
Zussman, J., and Brindley, G. W. (1957). “Serpentines with 6-layer orthohexagonal cells,” Am. Mineral. 42, 666670.Google Scholar
Zussman, J., Brindley, G. W., and Comer, J. J. (1957). “Electron diffraction studies of serpentine minerals,” Am. Mineral. 42, 133153.Google Scholar
Zyvagin, B. B. (1967). Electron-diffraction Analysis of Clay Mineral Structures, edited by R. W. Fairbridge, (Plenum, New York).Google Scholar