Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T08:45:55.619Z Has data issue: false hasContentIssue false

Synthesis and cell refinement of Ba0.5+x/2Zr2P3−xSixO12 with x=0 and 0.175

Published online by Cambridge University Press:  10 January 2013

Shanmugham Subramaniam
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
David P. Stinton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
O. Burl Cavin
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Camden R. Hubbard
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Paul F. Becher
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Santosh Y. Limaye
Affiliation:
LoTEC. Inc., 1840 W. Parkway Boulevard, West Valley City, Utah 84119

Abstract

Ba0.5+x/2Zr2P3xSixO12 or BaZPS compounds were synthesized by the sintering of powders formed by a solid-state reaction. The cell parameters of Ba0.5Zr2P3O12 and Ba0.5875Zr2P2.825Si0.175O12 were determined from X-ray diffraction (XRD) data based on the (#148) space group with hexagonal setting. The cell parameters were found to increase with increasing Si content in BaZPS.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alamo, J., and Roy, R. (1986). J. Mater. Sci. 21, 444450.CrossRefGoogle Scholar
Boilot, J. P., Salanie, J. P., Desplanches, G., and Lepotier, D. (1979). Mater. Res. Bull. 14, 14691477.CrossRefGoogle Scholar
Evans, H. T. Jr., Appleman, D. E., and Handwerker, D. S. (1963). Rep. PB216188, U.S. Dept. of Commerce, National Technical Information Center, 5285 Port Royal Rd., Springfield, VA 22151.Google Scholar
Goodenough, J. B., Hong, H. Y-P., and Kafalas, A. J. (1976). Mater. Res. Bull. 11, 203220.CrossRefGoogle Scholar
Hagman, L. O., and Kierkegaard, P. (1968). Acta Chemica Scandianvica 22, 18221832.CrossRefGoogle Scholar
Hazen, R. M., Finger, L. W., Agrawal, D. K., McKinstry, H. A., and Perrotta, A. J. (1987). J. Mater. Res. 2, 329337.CrossRefGoogle Scholar
Hong, H. Y-P. (1976). Mater. Res. Bull. 11, 173182.CrossRefGoogle Scholar
Hubbard, C. R., and Sokol, R. R. (1990). ORNL Calibration and Least Squares Software Package (High Temperature Materials Laboratory, Oak Ridge, TN).Google Scholar
Limaye, S. Y. (1989), “Materials and Processing Report,” 4, 12CrossRefGoogle Scholar
NBS Monograph 25 (1984). Standard X-Ray Diffraction Powder Patterns, Sec. 20, edited by Morris, M. C., McMurdie, H. F., Evans, E. H., Paretzkin, B., Parker, H. S., Pyrros, N. P., and Hubbard, C. R., (National Bureau of Standards, U.S. Dept. of Commerce).CrossRefGoogle Scholar
Okonenko, S. A., Stefanovich, S. Yu., Kalinin, V. B., and Venevtsev, Yu. N. (1978). Sov. Phys. Solid State 20, 16471648.Google Scholar
Roy, R., Vance, E. R., and Alamo, J. (1982). Mater. Res. Bull. 17, 585589.CrossRefGoogle Scholar
Roy, R., Agrawal, D. K., Alamo, J., and Roy, R. A. (1984). Mater. Res. Bull. 19, 471477.CrossRefGoogle Scholar
Scintag (1993). Diffraction Management System-2000, Ver 2.68 (Scintag, Inc., Sunnyvale, CA).Google Scholar
Senbhagaraman, S., Guru Row, T. N., and Umarji, A. M. (1989). Solid State Commun. 71, 609611.CrossRefGoogle Scholar
Shanmugham, S. (1993). “Synthesis, and thermal and mechanical properties of Ba1+xZr4P6−2xSi2xO24,” M.S. thesis, University of Tennessee, Knoxville, TN.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 60.CrossRefGoogle Scholar
Takahashi, T., Kuwabara, K., and Shibata, M. (1980). Solid State Ionics 1, 163175.CrossRefGoogle Scholar