Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T05:16:35.628Z Has data issue: false hasContentIssue false

Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method

Published online by Cambridge University Press:  06 March 2012

Sven C. Vogel*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Christian Hartig
Affiliation:
Technical University Hamburg-Harburg, 21071 Hamburg, Germany
Luca Lutterotti
Affiliation:
University of Trento, Trento, Italy, University of California at Berkeley, Berkeley, California 94720-4767
Robert B. Von Dreele
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Argonne National Laboratory, Argonne, Illinois
Hans-Rudolf Wenk
Affiliation:
University of California at Berkeley, Berkeley, California 94720-4767
Darrick J. Williams
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Author to whom correspondence should be addressed; Electronic mail: sven@lanl.gov

Abstract

In this paper we describe the capabilities for texture measurements of the new neutron time-of-flight diffractometer HIPPO at the Los Alamos Neutron Science Center. The orientation distribution function (ODF) is extracted from multiple neutron time-of-flight histograms using the full-pattern analysis first described by Rietveld. Both, the well-established description of the ODF using spherical harmonics functions and the WIMV method, more recently introduced for the analysis of time-of-flight data, are available to routinely derive the ODF from HIPPO data. At ambient conditions, total count time of less than one hour is ample to collect sufficient data for texture analysis in most cases. The large sample throughput for texture measurements at ambient conditions possible with HIPPO requires a robust and reliable, semi-automated data analysis. HIPPO’s unique capabilities to measure large quantities of ambient condition samples and to measure texture at temperature and uni-axial stress are described. Examples for all types of texture measurements are given

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dahms, M.and Bunge, H. J. (1989) J. Appl. Crystallogr. JACGAR 22, 439447. acr, JACGAR CrossRefGoogle Scholar
Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A. J., and Richardson, J. W. (1997). J. Appl. Phys. JAPIAU 81, 594600. jap, JAPIAU CrossRefGoogle Scholar
Matthies, S., Wenk, H.-R., and Vinel, G. (1988), J. Appl. Crystallogr. JACGAR 21, 285304. acr, JACGAR CrossRefGoogle Scholar
Popa, N. C. (1992). J. Appl. Crystallogr. JACGAR 25, 611616. acr, JACGAR CrossRefGoogle Scholar
Vogel, S. C. et al. (2003). Mater. Sci. Forum MSFOEP 426–432, 26612666. msf, MSFOEP CrossRefGoogle Scholar
Von Dreele, R. B. (1997). J. Appl. Crystallogr. JACGAR 30, 517525. acr, JACGAR CrossRefGoogle Scholar
Wenk, H.-R., Griegull, S., Pehl, Williams, D. J. (2003). LANSCE Research Highights, LALP-03-041.CrossRefGoogle Scholar
Wenk, H.-R., Matthies, S., Donovan, J., and Chateigner, D. (1991). J. Appl. Crystallogr. JACGAR 24, 920927. acr, JACGAR CrossRefGoogle Scholar
Wenk, H.-R., Lutterotti, L., Grigull, S., and Vogel, S. C. (2003). Nucl. Instrum. Methods Phys. Res. A NIMAER 515, 575588. nia, NIMAER CrossRefGoogle Scholar