Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T05:56:49.521Z Has data issue: false hasContentIssue false

Crystal structure of edoxaban tosylate monohydrate Form I, (C24H31ClN7O4S)(C7H7O3S)(H2O)

Published online by Cambridge University Press:  16 February 2021

James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of edoxaban tosylate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Edoxaban tosylate monohydrate crystallizes in space group P21 (#4) with a = 7.55097(2), b = 7.09010(2), c = 32.80420(21) Å, β = 96.6720(3)°, V = 1744.348(6) Å3, and Z = 2. The crystal structure consists of alternating layers of edoxaban cations and tosylate anions along the c-axis. The water molecules lie near the sulfonate end of the tosylate anions. The solid-state conformation of the edoxaban cation is determined by intermolecular interactions. The protonated nitrogen atom forms a strong N–H⋯O hydrogen bond to one of the tosylate oxygens. Only one of the water molecule hydrogens acts as a donor in an O–H⋯O hydrogen bond. The tosylate oxygens act as acceptors in a number of C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Berenguer Maimó, R., Racamonde Villanueva, M., and Winter, S. B. D. (2018). “Preparation process of edoxaban tosylate monohydrate,” European Patent Application EP3318568.Google Scholar
Blanton, J. R., Papoular, R. J., and Louër, D. (2019). “PreDICT: a graphical user interface to the DICVOL14 indexing software program for powder diffraction data,” Powder Diffr. 34, 233241.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2020). Materials Studio 2020 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr. 39, 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29, 269273.CrossRefGoogle Scholar
Kawanami, K. and Kitani, Y. (2017). “High-purity crystals of active blood coagulation factor X (FXA) inhibitor,” US Patent Application 2017/0022220 A1.Google Scholar
Koyama, T. (2011). “Method for producing diamine derivatives,” European Patent Application EP2371830A1.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton Radiat. 15, 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2014). “Some further considerations in Powder Diffraction Pattern indexing with the dichotomy method,” Powder Diffr. 29, S7S12.CrossRefGoogle Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0; from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
MDI (2020). JADE Pro version 7.8 (Computer software), Materials Data, Livermore, CA, USA.Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open babel: an open chemical toolbox,” J. Chem. Informatics 3, 33. doi:10.1186/1758-2946-3-33.Google ScholarPubMed
Ohta, T., Komoriya, S., Yoshino, T., Uoto, K., Nakamoto, Y., Naito, H., Mochizuki, A., Nagata, T., Kanno, H., Haginoya, N., Yoshikawa, K., Nagamochi, M., Kobayashi, S., and Ono, M. (2004). “Diamine derivatives,” European Patent Application EP1405852A1.Google Scholar
Ohta, T., Komoriya, S., Yoshino, T., Nagamochi, M., and Ono, M. (2008). “Diamine derivatives,” US Patent 7,365,205 B2.Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-Zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.CrossRefGoogle ScholarPubMed
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (group 1) citrate salts,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 74, 239252. doi:10.1107/S2052520618002330.CrossRefGoogle ScholarPubMed
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Suzuki, T. and Ono, M. (2011). “Crystal of diamine derivative and method of producing same,” Canadian Patent Application CA2793413.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70, 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle Scholar
Wavefunction, Inc. (2020). Spartan ’18 Version 1.4.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612.Google Scholar
Wheatley, A. M. and Kaduk, J. A. (2019). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.CrossRefGoogle Scholar