Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-21T08:33:15.388Z Has data issue: false hasContentIssue false

Design and management of a powder diffraction beamline for Line Profile Analysis: a realistic ray-tracing approach

Published online by Cambridge University Press:  16 April 2015

Luca Rebuffi*
Affiliation:
Elettra-Sincrotrone Trieste, Strada Statale 14, Km 163.5, Basovizza 34149, Trieste, Italy Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, Trento 38123, Italy
Paolo Scardi
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, Trento 38123, Italy
Manuel Sanchez del Rio
Affiliation:
European Synchrotron Radiation Facility BP 220, Grenoble-Cedex 38043, France
*
a) Author to whom correspondence should be addressed. Electronic mail: luca.rebuffi@elettra.eu

Abstract

Most synchrotron radiation X-ray diffraction (XRD) beamlines have been primarily designed for studying conventional materials, whereas a modern approach to nanomaterials requires a complete control of the diffracted signal, and therefore of the optics and general setup of the beamline. This requirement is especially relevant when Line Profile Analysis is pushed to the limits of large domain sizes, small deformations, or low defects concentration, which is a driving force to use synchrotron radiation XRD. We combine the SHADOW ray-tracing optical simulation with the calculation of powder diffraction profile from standard materials, into a high-level workflow environment based on the ORANGE software. Algorithms are developed to reproduce optical elements in a realistic form, so to evaluate the effects of aberrations, with the final purpose of reconstructing the Instrumental Profile Function of the beamline, with the possibility of investigating the role of each separate element. The results of this work can be of interest to most beamlines as a powerful tool for the design of setups of existing as well as new beamlines.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azaroff, L. V. (1955). “Polarization correction for crystal-monochromatized X-radiation,” Acta Crystallogr. 8, 701704.Google Scholar
Black, D. R., Windover, D., Henins, A., Filliben, J., and Cline, J. P. (2010). “Standard reference material 660b for X-ray metrology,” Adv. X-ray Anal. 54, 140148.Google Scholar
Black, D. R., Windover, D., Henins, A., Gil, D., Filliben, J., and Cline, J. P. (2009). “Standard reference material 640a for X-ray metrology,” Adv. X-ray Anal. 53, 172179.Google Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrofotometer for neutron diffraction,” Nucl. Instrum., 3, 223228.CrossRefGoogle Scholar
Cerrina, F., and Sanchez del Rio, M. (2009). “Ray-tracing of X-ray Optical Systems” in Handbook of Optics, edited by Bass, M. (McGraw Hill, New York), volume V, 3rd ed., ch. 35.Google Scholar
Cheary, R. W., and Coelho, A. A. (1998). “Axial divergence in a conventional X-ray powder diffractometer,” J. Appl. Crystallogr. 31, 851868.CrossRefGoogle Scholar
Cheary, R. W., Coelho, A. A., and Cline, J. P. (2004). “Fundamental parameters line profile fitting in laboratory diffractometers,” J. Res. Natl. Inst. Stand. Technol. 109, 125.Google Scholar
Chubar, O., and Elleaume, P. (1998). “Accurate and efficient computation of synchrotron radiation in the near field region,” Proc. of the EPAC98 Conf., 22–26 June 1998, p.1177–1179.Google Scholar
Demšar, J., and Zupan, B. (2004). “Orange: From Experimental Machine Learning to Interactive Data Mining,” White Paper (http://orange.biolab.si/), Faculty of Computer and Information Science, University of Ljubljana.Google Scholar
Gozzo, F., Cervellino, A., Leoni, N., Scardi, P., Bergamaschi, A., and Schmitt, B. (2012). “Instrumental profile of MYTHEN detector in Debye–Scherrer geometry,” Z. Kristallogr. 225, 616.Google Scholar
Hinrichsen, B., Dinnebier, R. E., and Jansen, M. (2008). Powder Diffraction: Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. J. L. (The Royal Society of Chemistry, Cambridge, UK), ch. 14, pp. 414438.Google Scholar
Lai, B., and Cerrina, F. (1986). “SHADOW: a synchrotron radiation ray tracing program,” Nucl. Instrum. Methods Phys. Res. A 246(1–3), 347–341.Google Scholar
Lambert, S., and Giullet, F. (2008). “Application of the X-ray tracing method to powder diffraction line profiles,” J. Appl. Crystallogr. 41, 153160.Google Scholar
Leoni, M., Welzel, U., and Scardi, P. (2004). “Polycapillary optics for materials science studies: instrumental effects and their correction,” J. Res. Natl. Inst. Stand. Technol. 109, 2748.Google Scholar
Lippmann, T., and Schneider, J. R. (2000). “Accurate structure-factor measurements using high-energy synchrotron radiation: a test on Cuprite, Cu2O,” J. Appl. Crystallogr. 33, 156167.Google Scholar
Malerba, C., Azanza Ricardo, C. L., Valentini, M., Biccari, F., Muüller, M., Rebuffi, L., Esposito, E., Mangiapane, P., Scardi, P., and Mittiga, A. (2014). “Stoichiometry effect on Cu2ZnSnS4 thin films morphological and optical properties,” J. Renew. Sustain. Energy 6, 011404.CrossRefGoogle Scholar
Mittemeijer, E. J., and Scardi, P. (Eds.), (2004). Diffraction Analysis of the Microstructure of Materials, Springer Series in Materials Science(Springer Verlag, Berlin), volume 68.Google Scholar
Patterson, A. (1939). “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978982.CrossRefGoogle Scholar
Rebuffi, L., Plaisier, J. R., Abdellatief, M., Lausi, A., Scardi, P. (2014). “MCX: a synchrotron radiation beamline for X-ray diffraction line profile analysis,” Z. Anorg. Allg. Chem. 640(15), 31003106. doi: 10.1002/zaac.201400163.Google Scholar
Sabine, T. M. (1987). “A powder diffractometer for a synchrotron source,” J. Appl Crystallogr. 20, 173178.CrossRefGoogle Scholar
Sanchez del Rio, M., Canestrari, N., Jiang, F., and Cerrina, F. (2011). “SHADOW3: a new version of the synchrotron X-ray optics modelling package,” J. Synchrotron Radiat. 18, 708716.CrossRefGoogle Scholar
Sanchez del Rio, M., Rebuffi, L., Demšar, J., Canestrari, N., and Chubar, O. (2014). “A proposal for an Open Source graphical environment for simulating X-ray optics,” Proc. SPIE 9209, Advances in Computational Methods for X-Ray Optics III, 92090X, doi:10.1117/12.2061834.Google Scholar
Scardi, P., and Leoni, M. (1999). “Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects,” J. Appl. Crystallogr. 32, 671682.CrossRefGoogle Scholar
Scardi, P., Leoni, M., and Delhez, R. (2004). “Line broadening analysis using integral breadth methods: a critical review”, J. Appl Crystallogr. 37, 381390.CrossRefGoogle Scholar
Scardi, P., Lutterotti, L., and Maistrelli, P. (1994). “Experimental determination of the instrumental broadening in the Bragg-Brentano geometry,” Powder Diffr. 9, 180186.Google Scholar
Scardi, P., Ortolani, M., and Leoni, M. (2010). “WPPM: microstructural analysis beyond the Rietveld method,” Mater. Sci. Forum, 651, 155171.Google Scholar
Scherrer, P. (1918). “Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen,” Mathematisch-Physikalische Klasse 2, 98100.Google Scholar
Schoonjans, T., Brunetti, A., Golosio, B., Sanchez del Rio, M., Solé, V. A., Ferrero, C., and Vincze, L. (2011). “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B: Atom. Spectrosc. 66, 776784.CrossRefGoogle Scholar
Von Dreele, R. B., and Rodriguez-Carvajal, J. (2008). Powder Diffraction: Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. J. L. (The Royal Society of Chemistry, Cambridge, UK), ch. 3, 5888.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008) “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105. doi: 10.1063/1.2969260.Google Scholar
Wang, Y. (1987). “Lorentz-polarization factor for correction of diffraction-line profiles,” J. Appl. Crystallogr. 20, 258259.Google Scholar
Welnak, C., Chen, G. J., and Cerrina, F. (1994). “SHADOW: a synchrotron radiation and X-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347(1–3), 344347.Google Scholar
Zhang, L., Hustace, R., Hignette, O., Ziegler, E., and Freund, A. (1998). “Design optimization of a flexural hinge-based bender for X-ray optics,” J. Synchrotron Radiat. 5, 804807.Google Scholar
Zuev, A. D. (2006). “Calculation of the instrumental function in X-ray powder diffraction,” J. Appl Crystallogr. 39, 304314.Google Scholar
Zuev, A. D. (2008). “Using the general equation of a conic for the calculation of the instrument function of a Bragg–Brentano diffractometer,” J. Appl. Crystallogr. 41, 115123.Google Scholar