Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T13:53:29.503Z Has data issue: false hasContentIssue false

Electric field influence on emission of characteristic X-ray from Al2O3 targets bombarded by slow Xe+ ions

Published online by Cambridge University Press:  01 March 2012

J. C. Rao*
Affiliation:
Department of Materials Science, Harbin Institute of Technology, Harbin 150001, China
M. Song
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13, Sakura, Tsukuba, Ibaraki 305-0003, Japan
K. Mitsuishi
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13, Sakura, Tsukuba, Ibaraki 305-0003, Japan
M. Takeguchi
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13, Sakura, Tsukuba, Ibaraki 305-0003, Japan
K. Furuya
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13, Sakura, Tsukuba, Ibaraki 305-0003, Japan
*
a)Electronic mail: jcrao@hit.edu.cn

Abstract

Low energy characteristic X-ray emission from Al2O3 monocrystalline specimens is measured under bombardment of 100 keV Xe+ ions. The electric field influence on emission of the X-rays of constitute elements in the specimens was investigated. The energy dispersive X-ray spectroscopy spectra show that the characteristic X-ray of Al-Kα seems to be depressed by the applied dc voltages, while the peak intensity of O-Kα was not notably influenced. The O-Kα peaks were broadened and the total counts increased as a higher dc bias was applied. It is possible that a dc electric field parallel to the target surface may influence the X-ray emission from it under ion bombardment.

Type
X-Ray Fluorescence and Related Techniques
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blaise, G. and Gressus, C. Le (1991). J. Appl. Phys. JAPIAU 10.1063/1.348832 69, 63346339.CrossRefGoogle Scholar
Hamanaka, H., Hasegawa, K., and Maeda, K. (1996). Nucl. Instrum. Methods Phys. Res. B NIMBEU 109–110, 203205.CrossRefGoogle Scholar
Jesus, A. P., Reis, M. A., and Alves, L. C. (1998). Nucl. Instrum. Methods Phys. Res. B NIMBEU 136–138, 837840.CrossRefGoogle Scholar
Jesus, A. P., Reis, M. A., and Alves, L. C. (2000). Nucl. Instrum. Methods Phys. Res. B NIMBEU 161–163, 120124.CrossRefGoogle Scholar
Kawai, J., Maeda, K., Sakauchi, N., and Konishi, I. (1996). Nucl. Instrum. Methods Phys. Res. B NIMBEU 109–110, 206208.CrossRefGoogle Scholar
Mboweni, R. C. M., Pineda, C. A., Peisach, M., and Pillay, A. E. (1994). Nucl. Instrum. Methods Phys. Res. B NIMBEU 85, 138141.CrossRefGoogle Scholar
Meyer, J. D. and Arafah, D. E. (1990). Nucl. Instrum. Methods Phys. Res. B NIMBEU 50, 109113.CrossRefGoogle Scholar
Peisach, M., Pillay, A. E., and Pineda, C. A. (1993). Nucl. Instrum. Methods Phys. Res. B NIMBEU 75, 1416.CrossRefGoogle Scholar
Peisach, M., Pineda, C. A., Pillay, A. E., and Springhorn, K. A. (1994). Nucl. Instrum. Methods Phys. Res. B NIMBEU 94, 540544.CrossRefGoogle Scholar
Pillay, A. E. and Peisach, M. (1994). J. Radioanal. Nucl. Chem. JRNCDM 188, 453462.CrossRefGoogle Scholar
Szoekefalvi-Nagy, Z., Demeter, I., Hollos-Nagy, K., and Kovacs, I. (1996). Nucl. Instrum. Methods Phys. Res. B NIMBEU 109–110, 5962.CrossRefGoogle Scholar