Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T18:54:27.670Z Has data issue: false hasContentIssue false

The Measurement of Stresses in Composites

Published online by Cambridge University Press:  10 January 2013

J. B. Cohen
Affiliation:
Department of Materials Science and Engineering, The Technological Institute, Northwestern University, Evanston, IL 60201, U.S.A.

Abstract

Although there is mounting interest in the measurement of stresses in composite materials after fabrication and/or use, few measurements to date have not taken into account the three dimensional nature of the stress system in such materials. Most data give only the net stress, that is, the difference between principal stresses. A procedure for a more complete measurement (in a reasonable time) is developed here, including the separation of macrostresses and microstresses. If time does not permit a full investigation, measurements of the lattice parameters of the component phases provide a simple way to sample the hydrostatic component due to differential thermal contraction. The Barrett-Predecki method of adding filler is particularly promising for stress measurements in those composites whose component phases do not give appropriate diffraction peaks. This procedure could also be used for monitoring stresses during the useful life of such materials.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, C. S., and Predecki, P. (1976). Polymer Eng. & Sci., 6, 602.CrossRefGoogle Scholar
Barrett, C. S., and Predecki, P. (1978). Adv. in X-ray Analysis, 21, 305.Google Scholar
Barrett, C. S., and Predecki, P. (1980). Polymer Composites, 1, 2.CrossRefGoogle Scholar
Chipman, D. R. (1975). FP/ZE41A Magnesium Data Base Review, AMMRC SP 83-3, 21 April, p. 75.Google Scholar
Devine, T. and Cohen, J. B. (1986). Adv. in X-ray Analysis, 29, in press.Google Scholar
Doig, P. and Flewitt, P. E. J. (1985). Acta Metall., 33, 731.CrossRefGoogle Scholar
Dölle, H. and Cohen, J. B. (1980). Metall. Trans. 11A, 159.CrossRefGoogle Scholar
Gillin, L. M., Hawkes, G. A. and Hill, T. G. (1969). J. Aust. Inst. Metals., 14, 242.Google Scholar
Grossman, L. N. and Fulrath, R. M. (1961). J. Amer. Ceramic Soc., 44, 567.CrossRefGoogle Scholar
Hanabusa, T., Nishioka, K. and Fujiwara, H. (1983). Z. Metallk., 74, 307.Google Scholar
Hauk, V. M. and Vaessen, G. J. H. (1984). Met. Trans., 15A, 1407.CrossRefGoogle Scholar
Hawkes, G. A. (1974). J. Aust. Inst. Metals, 19, 200.Google Scholar
James, M. R. and Cohen, J. B. (1976). Adv. in X-ray Analysis, 19, 695.Google Scholar
James, M. R. and Cohen, J. B. (1977). Adv. in X-ray Analysis, 20, 291.Google Scholar
James, M. R. and Cohen, J. B. (1978). J. Testing & Evaluation, 6, 91.CrossRefGoogle Scholar
James, M. R. and Cohen, J. B. (1980). Treatise on Mat. Sci. & Eng. Technology 19A, 1.Google Scholar
Krawtiz, A. D. (1984). Adv. in X-ray Analysis, 27, 239.Google Scholar
Krawtiz, A. D. (1985). Mat. Sci. & Eng., 51, in press.Google Scholar
Ledbetter, H. M., and Austin, M. W., (1986). Adv. in X-ray Analysis, 29, in press.Google Scholar
Marion, R. H. and Cohen, J. B. (1975). Adv. in X-ray Analysis, 18, 46.Google Scholar
Mura, T. (1982): Micromechanics of Defects in Solids, Martinus Nijhoff, publishers, The Hague, Holland.CrossRefGoogle Scholar
Nishioka, K., Hanabusa, T. and Fujiwara, H. (1974). Scripta Metall., 8, 1344.Google Scholar
Noyan, I. C. (1983). Metall. Trans., 14A, 1907.CrossRefGoogle Scholar
Noyan, I. C. (1985a). Adv. in X-ray Analysis 28, 281.Google Scholar
Noyan, I. C. (1985b). Mat. Sci. & Eng., 75, 95.CrossRefGoogle Scholar
Noyan, I. C. and Cohen, J. B. (1984). Scripta. Metall., 18, 627.CrossRefGoogle Scholar
Noyan, I. C. and Cohen, J. B. (1984). Adv. in X-ray Analysis, 27, 129.Google Scholar
Noyan, I. C. and Cohen, J. B. (1985). Mat. Sci. & Eng., 75, 179.CrossRefGoogle Scholar
Perry, K., Noyan, I. C., Rudnik, P. J. and Cohen, J. B. (1984). Adv. in X-ray Analysis 27, 159.Google Scholar
Predecki, P., and Barrett, C. S. (1979). J. Composite Materials, 13, 61.CrossRefGoogle Scholar
Predecki, P. and Barrett, C. S. (1982). J. Composite Materials, 16, 260.CrossRefGoogle Scholar
Rudnick, P., Cohen, J. B. (1986). Adv. in X-ray Analysis, 29 in press.Google Scholar
Samoilov, A. I., Svedov, I. L., Krivko, A. I., Chubarov, V. M. and Sakharov, V. V. (1977). Fiz. Khim. Obrab. Mater., 3, 121.Google Scholar
Schwartz, L. H. and Cohen, J. B. (1977). Diffraction from Materials, Academic Press, New York.Google Scholar
Takei, N., Nishioka, K., Hanabusa, T. and Fujiwara, H. (1977). Scripta Metall., 11, 619.CrossRefGoogle Scholar
Tompson, C. W., Mildner, D. F. R., Mehregany, M., Sudol, J., Berliner, R. and Yelon, W. B. (1984). J. Appl. Crystallogr., 17, 385.CrossRefGoogle Scholar
Tsai, S., (1980). Ph.D. Thesis, University of Texas-Austin, December.Google Scholar
Tsai, S., Mahulikar, D., Marcus, H. L., Noyan, I. C. and Cohen, J. B. (1981). Mat. Sci. & Eng., 47, 145.CrossRefGoogle Scholar