Published online by Cambridge University Press: 27 July 2009
System components of communication/computer networks are quite reliable in that their average uptimes are much larger than the average repair/replacement time of a failed unit. By taking this observation into account, a semiMarkov model is developed with a simple regenerative structure, thereby providing strong analytical and computational tractability. Expressions of a variety of dynamic performability measures, such as the cumulative system processing capacity and the task completion time, are explicitly derived. Computational procedures for evaluating such time-dependent performability measures are developed based on these theoretical results combined with the Laguerre transform method. The power and the efficiency of the computational procedures are demonstrated through a numerical example.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.