Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T00:02:38.920Z Has data issue: false hasContentIssue false

First Passage Time Distribution of a Two-Dimensional Wiener Process with Drift

Published online by Cambridge University Press:  27 July 2009

Marco Dominé
Affiliation:
Department of Mathematical Stochastics, Technical University of Magdeburg, PSF 4120, 39076 Magdeburg, Germany
Volkmar Pieper
Affiliation:
Department of Mathematical Stochastics, Technical University of Magdeburg, PSF 4120, 39076 Magdeburg, Germany

Abstract

The two-dimensional correlated Wiener process (or Brownian motion) with drift is considered. The Fokker-Planck (or Kolmogorov forward) equation for the Wiener process (X1(t), X2(t)) is solved under absorbing boundary conditions on the lines x1= h1 and x2 = h2 and a fixed starting point (x0,1, x0,2). The first passage (or first exit) time when the process leaves the domain G = ( −∞, h1) × ( −∞, h2) is derived.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abramowitz, M. & Stegun, I.A. (1965). Handbook of mathematical functions. New York: Dover Publications.Google Scholar
2.Ahlebehrendt, N. & Kempe, V. (1984). Analyse stochastischer Systeme. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
3.Bhattacharya, R.N. & Waymire, E.C. (1990). Stochastic processes with applications. New York, Chichester, Brisbane, Toronto, and Singapore: John Wiley & Sons.Google Scholar
4.Buckholtz, P.G. & Wasan, M.T. (1979). First passage probabilities of a two dimensional Brown-ian motion in an anisotropic medium. Sankhyā A. 41: 198206.Google Scholar
5.Gardiner, C.W. (1990). Handbook of stochastic methods for physics, chemistry and the natural sciences, 2nd ed.New York, Berlin, and Heidelberg: Springer-Verlag.Google Scholar
6.Iyengar, S. (1985). Hitting lines with two-dimensional Brownian motion. SIAM Journal of Applied Mathematics 45(6): 983989.CrossRefGoogle Scholar
7.Magnus, W., Oberhettinger, F., & Soni, R.P. (1966). Formulas and theorems for the special functions of mathematical physics. Berlin, Heidelberg, and New York: Springer-Verlag.CrossRefGoogle Scholar
8.Pieper, V. (1989). Zuverlässigkeitsmodelle auf der Grundlage von Niveauüberschreitungen bei stochastischen Prozessen und der Modellierung von Abnutzungsvorgängen. Doctoral dissertation, University of Magdeburg.Google Scholar
9.Prudnikov, A.P., Brychkov, Yu.A., & Marichev, O.I. (1986). Integrals and series, Vol. II. New York, London, Paris, Montreux, Tokyo, and Melbourne: Gordon and Breach Science Publishers.Google Scholar
10.Siegert, A.J.F. (1951). On the first passage time probability problem. Physical Review 81(4): 617623.CrossRefGoogle Scholar
11.Spitzer, F. (1958). Some theorems concerning 2-dimensional Brownian motion. Transactions of the American Mathematical Society 87: 187197.CrossRefGoogle Scholar
12.Watson, G.N. (1966). A treatise on the theory of Bessel functions, 2nd ed.Cambridge: Cambridge University Press.Google Scholar