Published online by Cambridge University Press: 27 July 2009
Two queues forming two independent Poisson processes are served by one server with exponential service time. The server always works on the longer queue and, in case that they are of equal length, chooses either one with probability ½. Let πij be the probability that the two queue lengths equal i andj at equilibrium and π(z, w) = ∑πi j Ziwj. We determine π(z, w) and derive from this asymptotic formulas forπij as i, j → ∞. These asymptotic formulas are used to study the interdependence of the queue lengths. In particular, we obtain limit laws for the queue lengths conditioned on each other.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.