Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T11:02:04.651Z Has data issue: false hasContentIssue false

BARRIERS TO THE USE OF ARTIFICIAL INTELLIGENCE IN THE PRODUCT DEVELOPMENT – A SURVEY OF DIMENSIONS INVOLVED

Published online by Cambridge University Press:  19 June 2023

Benedikt Müller*
Affiliation:
University of Stuttgart
Daniel Roth
Affiliation:
University of Stuttgart
Matthias Kreimeyer
Affiliation:
University of Stuttgart
*
Müller, Benedikt, University of Stuttgart, Germany, benedikt.mueller@iktd.uni-stuttgart.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Artificial intelligence (AI) is seen as a great opportunity to secure future competitiveness in many corporate sectors. Potential for its use also exists in product development (PD) activities due to the amount of data generated and processed. Nevertheless, there are problems in applying the technology. This paper addresses current challenges based on a literature review, considering three disciplines that are necessary for the scope of this paper as a minimum: AI itself, information technology infrastructures (ITI) in context of digital transformation (DT), and PD as an application area. Building on the basic considerations of the state of the art, a link between the domains is established by outlining a possible reference framework towards the utilization of AI applications in PD. This enables an expanded interdisciplinary understanding. Key obstacles appear specifically to be difficult collaboration conditions between the disciplines of PD and AI applications development due to communication problems. Reasons for this include:

  • – Meta models of PD do not provide a sufficient information base

  • – Lack of standardized process models for the deployment of AI

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Ammersdörfer, T. and Inkermann, D. (2022), “A Process Modelling Morphology to Support Process Analysis and Development in Change Processes”, 17th International Design Conference, Online, 23-26 May 2022, Cambridge University Press, University of Cambridge, pp. 91100. https://doi.org/10.1017/pds.2022.10.CrossRefGoogle Scholar
Aranda-Muñoz, Á., Florin, U., Yamamoto, Y., Eriksson, Y. and Sandström, K. (2022), “Co-Designing with AI in Sight”, 17th International Design Conference, Online, 23-26 May 2022, Cambridge University Press, University of Cambridge, pp. 101110. https://doi.org/10.1017/pds.2022.11.CrossRefGoogle Scholar
Azarov, V.N. and Leokhin, Y.L. (2020), “Approaches to Building the IT Infrastructure of a Digital Enterprise”, 2020 International Conference on Quality Management, Transport and Information Security, Information Technologies, IEEE, pp. 614.CrossRefGoogle Scholar
Azizan, S., Ismail, R., Baharum, A. and Hidayah Mat Zain, N. (2021), “Exploring The Factors That Influence The Success Of Digitalization In An Organization's IT Department”, 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), IEEE, pp. 16.Google Scholar
Back, A., Bub, U. and Wagner, D.M. (2022), “Organisationale Ambidextrie für Digitale Transformation gezielt entwickeln – Konzeption des „CDO-CIO Do-it Kit“ auf Basis eines Reifegradansatzes”, HMD Praxis der Wirtschaftsinformatik, Vol. 59 No. 3, pp. 818839.CrossRefGoogle Scholar
Becker, J., Kugeler, M. and Rosemann, M. (2012), Prozessmanagement, Springer Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Bourdeau, S., Coulon, T. and Vieru, D. (2022), “Coping With Technological Shifts: Organizational Actions to Adapt IT Infrastructures”, IT Professional, Vol. 24 No. 3, pp. 6066.CrossRefGoogle Scholar
Briard, T., Jean, C., Aoussat, A., Véron, P., Le Cardinal, J. and Wartzack, S. (2021), “Data-driven design challenges in the early stages of the product development process”, The 23rd International Conference on Engineering Design, Gothenburg, Sweden, 16-20 August 2021, pp. 851860.CrossRefGoogle Scholar
Caputo, C. and Cardin, M.-A. (2021), “The role of machine learning for flexibility and real options analysis in engineering systems design”, The 23rd International Conference on Engineering Design, Gothenburg, Sweden, 16-20 August 2021, pp. 31213130.CrossRefGoogle Scholar
Chiarello, F., Coli, E., Giordano, V., Fantoni, G. and Bonaccorsi, A. (2021), “Data for engineering design: maps and gaps”, The 23rd International Conference on Engineering Design, Gothenburg, Sweden, 16-20 August 2021, pp. 821830.CrossRefGoogle Scholar
Chong, L., Kotovsky, K. and Cagan, J. (2022), “Are Confident Designers Good Teammates to Artificial Intelligence?: A Study of Self-Confidence, Competence, and Collaborative Performance”, 17th International Design Conference, Online, 23-26 May 2022, Cambridge University Press, University of Cambridge, pp. 15311540. https://doi.org/10.1017/pds.2022.155.CrossRefGoogle Scholar
Costa, D.G., Macul, V.C., Costa, J.M.H., Exner, K., Pförtner, A., Stark, R. and Rozenfeld, H. (2015), “Towards the next generation of design process models: a gap analysis of existing models”, The 20th International Conference on Engineering Design, Milan, Italy, 27-30 July 2015, pp. 441450.Google Scholar
Dellermann, D., Ebel, P., Söllner, M. and Leimeister, J.M. (2019), “Hybrid Intelligence”, Business & Information Systems Engineering, Vol. 61 No. 5, pp. 637643.CrossRefGoogle Scholar
Eisenbart, B., Gericke, K. and Blessing, L. (2011), “A framework for comparing design modelling approaches across disciplines”, The 18th International Conference on Engineering Design, Lyngby/Copenhagen, Denmark, 15-19 August 2011, pp. 344355.Google Scholar
Gadepally, V., Goodwin, J., Kepner, J., Reuther, A., Reynolds, H., Samsi, S., Su, J. and Martinez, D. (2019), “AI Enabling Technologies: A Survey”, arXiv preprint arXiv:1905.03592.Google Scholar
Gericke, K., Adolphy, S., Qureshi, A.J., Blessing, L. and Stark, R. (2021), “Opening up Design Methodology”, in Blessing, L.T.M., Qureshi, A.J. and Gericke, K. (Eds.), The future of transdisciplinary design: Proceedings of the Workshop on “The Future of Transdisciplinary Design”, Springer, Cham, pp. 314.CrossRefGoogle Scholar
Gericke, K. and Blessing, L. (2012), “An analysis of design process models across disciplines”, 12th International Design Conference, Dubrovnik, Croatia, 21-24 May 2012, pp. 171180.Google Scholar
Gericke, K., Eckert, C. and Stacey, M. (2017), “What do we need to say about a design method?”, The 21st International Conference on Engineering Design, Vancouver, Canada, 21-25 August 2017, pp. 101110.Google Scholar
Hess, T. (2022), Managing the Digital Transformation: A Guide to Successful Organizational Change, Springer eBook Collection, Springer Fachmedien Wiesbaden; Imprint Springer Gabler, Wiesbaden.CrossRefGoogle Scholar
Hess, T. and Sciuk, C. (2022), “Das Zusammenspiel von Chief Executive Officer und Chief Digital Officer bei der digitalen Transformation”, HMD Praxis der Wirtschaftsinformatik, Vol. 59 No. 3, pp. 840853.CrossRefGoogle Scholar
Hoffmann, J. and Heimes, P. (2018), “Informationssystem-Architekturen produzierender Unternehmen für die Digitalisierung gestalten”, HMD Praxis der Wirtschaftsinformatik, Vol. 55 No. 5, pp. 9841005.CrossRefGoogle Scholar
Hofmann, P., Jöhnk, J., Protschky, D., Stähle, P., Urbach, N. and Buck, C. (2020), “KI-Anwendungsfälle zielgerichtet identifizieren”, Wirtschaftsinformatik & Management, Vol. 12 No. 3, pp. 184193.CrossRefGoogle Scholar
Holzinger, A. and Müller, H. (2020), “Verbinden von Natürlicher und Künstlicher Intelligenz: eine experimentelle Testumgebung für Explainable AI (xAI)”, HMD Praxis der Wirtschaftsinformatik, Vol. 57 No. 1, pp. 3345.CrossRefGoogle Scholar
Kessler, R. and Gómez, J.M. (2020), “Implikationen von Machine Learning auf das Datenmanagement in Unternehmen”, HMD Praxis der Wirtschaftsinformatik, Vol. 57 No. 1, pp. 89105.CrossRefGoogle Scholar
Kreutzer, R.T. and Sirrenberg, M. (2019), Künstliche Intelligenz verstehen, Springer Fachmedien Wiesbaden, Wiesbaden.CrossRefGoogle Scholar
North, K. and Maier, R. (2018), “Wissen 4.0 – Wissensmanagement im digitalen Wandel”, HMD Praxis der Wirtschaftsinformatik, Vol. 55 No. 4, pp. 665681.CrossRefGoogle Scholar
Qureshi, A.J., Gericke, K. and Blessing, L. (2014), “Stages in Product Lifecycle: Trans-disciplinary Design Context”, 24th CIRP Design Conference, Milano, Italy, 14-16 April 2014, Elsevier B.V., pp. 224229. https://dx.doi.org/10.1016/j.procir.2014.03.131.CrossRefGoogle Scholar
Rädler, S. and Rigger, E. (2022), “A Survey on the Challenges Hindering the Application of Data Science, Digital Twins and Design Automation in Engineering Practice”, 17th International Design Conference, Online, 23–26 May 2022, Cambridge University Press, University of Cambridge, pp. 16991708. https://doi.org/10.1017/pds.2022.172.CrossRefGoogle Scholar
Stoffers, P., Karla, J. and Kaufmann, J. (2022), “Digitalisierung von Management-Reporting-Prozessen – Ein technologieorientiertes Reifegradmodell zum Einsatz in KMU”, HMD Praxis der Wirtschaftsinformatik, Vol. 59 No. 3, pp. 940960.CrossRefGoogle Scholar
Streim, A. (2020), Unternehmen tun sich noch schwer mit Künstlicher Intelligenz, Berlin, Germany, available at: https://www.bitkom.org/Presse/Presseinformation/Unternehmen-tun-sich-noch-schwer-mit-Kuenstlicher-Intelligenz (accessed 15 December 2021).Google Scholar
Streim, A. and Uhl, M. (2022), KI gilt in der deutschen Wirtschaft als Zukunftstechnologie – wird aber selten genutzt, Berlin, Germany, available at: https://www.bitkom.org/Presse/Presseinformation/Kuenstliche-Intelligenz-2022 (accessed 12 October 2022).Google Scholar
Ulrich, M. and Bachlechner, D. (2020), “Wirtschaftliche Bewertung von KI in der Praxis – Status Quo, methodische Ansätze und Handlungsempfehlungen”, HMD Praxis der Wirtschaftsinformatik, Vol. 57 No. 1, pp. 4659.CrossRefGoogle Scholar
van Giffen, B., Borth, D. and Brenner, W. (2020), “Management von Künstlicher Intelligenz in Unternehmen”, HMD Praxis der Wirtschaftsinformatik, Vol. 57 No. 1, pp. 420.CrossRefGoogle Scholar
Wang, L., Liu, Z., Liu, A. and Tao, F. (2021), “Artificial intelligence in product lifecycle management”, The International Journal of Advanced Manufacturing Technology, Vol. 114 No. 3-4, pp. 771796.CrossRefGoogle Scholar
Wilmsen, M., Gericke, K., Jäckle, M. and Albers, A. (2020), “Method for the identification of requirements for designing reference processes”, 16th International Design Conference, Cavtat, Croatia, 26–29 October 2020, pp. 11751184. https://doi.org/10.1017/dsd.2020.301.CrossRefGoogle Scholar