Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T01:18:12.250Z Has data issue: false hasContentIssue false

NODAL COSINE SINE MATERIAL INTERPOLATION IN MULTI OBJECTIVE TOPOLOGY OPTIMIZATION WITH THE GLOBAL CRITERIA METHOD FOR LINEAR ELASTO STATIC, HEAT TRANSFER, POTENTIAL FLOW AND BINARY CROSS ENTROPY SHARPENING

Published online by Cambridge University Press:  27 July 2021

Martin Denk*
Affiliation:
Bundeswehr University Munich, Institute for Technical Product Development;
Klemens Rother
Affiliation:
Munich University of Applied Sciences, Institute for Material and Building Research;
Mario Zinßer
Affiliation:
Centre
Christoph Petroll
Affiliation:
Bundeswehr University Munich, Institute for Materials, Fuels and Lubricants;
Kristin Paetzold
Affiliation:
Bundeswehr University Munich, Institute for Technical Product Development;
*
Denk, Martin, Bundeswehr University Munich, Insitute for Technical Product Development, Germany, martin.denk@unibw.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Topology optimization is typically used for suitable design suggestions for objectives like mean compliance, mean temperature, or model analysis. Some modern modeling technics in topology optimization require a nodal based material interpolation. Therefore this article is referred to a continuous material interpolation in topology optimization. To cover a smooth and differentiable density field, we address trigonometric shape functions which are infinitely differentiable. Furthermore, we extend a so-known global criteria method with a sharpening function based on binary cross-entropy, so that sharper solutions results. The proposed material interpolation is applied to different applications such as heat transfer, elasto static, and potential flow. Furthermore, these different objectives are together optimized using a multi-objective criterion.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Alberto, E., Sigmund, O., 2004. Topology optimization of multiple physics problems modelled by Poisson's equation. Lat. Am. J. Solids Struct. 1, 169184.Google Scholar
Bendsøe, M.P., Sigmund, O., 1999. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635654. https://doi.org/10.1007/s004190050248Google Scholar
Bierdel, M., Hoschke, K., Pfaff, A., Jäcklein, M., Schimmerohn, M., Wickert, M., 2017. Multidisciplinary Design Optimization of a Satellite Structure by Additive Manufacturing, in: 68th International Astronautical Congress (IAC). Presented at the 68th International Astronautical Congress (IAC), Adelaide, Australia.Google Scholar
Chu, A., Yuan, Y., Zhu, J., Lu, X., Zhou, C., 2020. The Design and Investigation of a Cooling System for a High Power Ni-MH Battery Pack in Hybrid Electric Vehicles. Appl. Sci. 10, 1660. https://doi.org/10.3390/app10051660CrossRefGoogle Scholar
Conlan-Smith, C., James, K.A., 2019. A stress-based topology optimization method for heterogeneous structures. Struct. Multidiscip. Optim. 60, 167183. https://doi.org/10.1007/s00158-019-02207-9CrossRefGoogle Scholar
Cui, M., Yang, X., Zhang, Y., Luo, C., Li, G., 2018. An asymptotically concentrated method for structural topology optimization based on the SIMLF interpolation. Int. J. Numer. Methods Eng. 115, 11751216. https://doi.org/10.1002/nme.5840CrossRefGoogle Scholar
da Silva, G.A., Beck, A.T., Sigmund, O., 2019. Stress-constrained topology optimization considering uniform manufacturing uncertainties. Comput. Methods Appl. Mech. Eng. 344, 512537. https://doi.org/10.1016/j.cma.2018.10.020CrossRefGoogle Scholar
Dede, E., 2009. Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems.Google Scholar
Dedè, L., Borden, M.J., Hughes, T.J.R., 2012. Isogeometric Analysis for Topology Optimization with a Phase Field Model. Arch. Comput. Methods Eng. 19, 427465. https://doi.org/10.1007/s11831-012-9075-zCrossRefGoogle Scholar
Denk, M., Paetzold, K., Rother, K., 2019. Feature line detection of noisy triangulated CSGbased objects using deep learning, in: Proceedings of the 30th Symposium Design for X (DFX 2019), DfX. Presented at the DfX Symposium 2019, The Design Society, Jesteburg, Germany, pp. 239250. https://doi.org/10.35199/dfx2019.21Google Scholar
Denk, M., Rother, K., Paetzold, K., 2020. Multi-Objective Topology Optimization of Heat Conduction and Linear Elastostatic using Weighted Global Criteria Method, in: Proceedings of the 31st Symposium Design for X (DFX2020), DFX. Presented at the DfX Symposium 2020, The Design Society, Bamberg, pp. 91100. https://doi.org/10.35199/dfx2020.10Google Scholar
Du, Y., Yan, S., Zhang, Y., Xie, H., Tian, Q., 2015. A modified interpolation approach for topology optimization. Acta Mech. Solida Sin. 28, 420430. https://doi.org/10.1016/S0894-9166(15)30027-6CrossRefGoogle Scholar
Ensici, A., Badke-Schaub, P., 2011. Information behavior in multidisciplinary design teams, in: Proceedings of the 18th International Conference on Engineering Design (ICED 11). Presented at the Proceedings of the 18th International Conference on Engineering Design (ICED 11), Denmark, pp. 414423.Google Scholar
Gao, J., Gao, L., Luo, Z., Li, P., 2019. Isogeometric topology optimization for continuum structures using density distribution function. Int. J. Numer. Methods Eng. 119, 9911017. https://doi.org/10.1002/nme.6081CrossRefGoogle Scholar
Gao, J., Luo, Z., Xiao, M., Gao, L., Li, P., 2020. A NURBS-based Multi-Material Interpolation (N-MMI) for isogeometric topology optimization of structures. Appl. Math. Model. 81, 818843. https://doi.org/10.1016/j.apm.2020.01.006CrossRefGoogle Scholar
Gersborg-Hansen, A., Bendsøe, M.P., Sigmund, O., 2006. Topology optimization of heat conduction problems using the finite volume method. Struct. Multidiscip. Optim. 31, 251259. https://doi.org/10.1007/s00158-005-0584-3CrossRefGoogle Scholar
Gholamibozanjani, G., Farid, M., 2019. Experimental and mathematical modeling of an air-PCM heat exchanger operating under static and dynamic loads. Energy Build. 202, 109354. https://doi.org/10.1016/j.enbuild.2019.109354CrossRefGoogle Scholar
Guest, J.K., 2009. Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199, 123135. https://doi.org/10.1016/j.cma.2009.09.023CrossRefGoogle Scholar
Guest, J.K., Prévost, J.H., Belytschko, T., 2004. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238254. https://doi.org/10.1002/nme.1064CrossRefGoogle Scholar
Guirguis, D., Aly, M.F., 2016. An evolutionary multi-objective topology optimization framework for welded structures, in: 2016 IEEE Congress on Evolutionary Computation (CEC). Presented at the 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 372378. https://doi.org/10.1109/CEC.2016.7743818CrossRefGoogle Scholar
Gupta, D.K., 2019. Topology optimization for high-resolution designs: Application in solar cell metallization. https://doi.org/10.4233/uuid:51dde3f6-2a38-47a0-b719-420ff74ded5dCrossRefGoogle Scholar
Gupta, D.K., Langelaar, M., Barink, M., van Keulen, F., 2015. Topology optimization of front metallization patterns for solar cells. Struct. Multidiscip. Optim. 51, 941955. https://doi.org/10.1007/s00158-014-1185-9CrossRefGoogle Scholar
Hashin, Z., Shtrikman, S., 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127140. https://doi.org/10.1016/0022-5096(63)90060-7CrossRefGoogle Scholar
Hassani, B., Tavakkoli, S.M., Ghasemnejad, H., 2013. Simultaneous shape and topology optimization of shell structures. Struct. Multidiscip. Optim. 48, 221233. https://doi.org/10.1007/s00158-013-0894-9CrossRefGoogle Scholar
He, Q., Kang, Z., Wang, Y., 2014. A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput. Mech. 54, 629644. https://doi.org/10.1007/s00466-014-1011-7CrossRefGoogle Scholar
Holmberg, E., Torstenfelt, B., Klarbring, A., 2013. Stress constrained topology optimization. Struct. Multidiscip. Optim. 48, 3347. https://doi.org/10.1007/s00158-012-0880-7CrossRefGoogle Scholar
Kang, Z., Wang, Y., 2012. A nodal variable method of structural topology optimization based on Shepard interpolant. Int. J. Numer. Methods Eng. 90, 329342. https://doi.org/10.1002/nme.3321CrossRefGoogle Scholar
Kang, Z., Wang, Y., 2011. Structural topology optimization based on non-local Shepard interpolation of density field. Comput. Methods Appl. Mech. Eng. 200, 35153525. https://doi.org/10.1016/j.cma.2011.09.001CrossRefGoogle Scholar
Kim, W.-Y., Grandhi, R.V., Haney, M., 2006. Multiobjective Evolutionary Structural Optimization Using Combined Static/Dynamic Control Parameters. AIAA J. 44, 794802. https://doi.org/10.2514/1.16971CrossRefGoogle Scholar
Liu, H., Yang, D., Hao, P., Zhu, X., 2018. Isogeometric analysis based topology optimization design with global stress constraint. Comput. Methods Appl. Mech. Eng. 342, 625652. https://doi.org/10.1016/j.cma.2018.08.013CrossRefGoogle Scholar
Luo, Z., Zhang, N., Wang, Y., Gao, W., 2013. Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Methods Eng. 93, 443464. https://doi.org/10.1002/nme.4394CrossRefGoogle Scholar
Mannor, S., Peleg, D., Rubinstein, R., 2005. The cross entropy method for classification, in: Proceedings of the 22nd International Conference on Machine Learning, ICML ’05. Association for Computing Machinery, New York, NY, USA, pp. 561568. https://doi.org/10.1145/1102351.1102422CrossRefGoogle Scholar
Matsui, K., Terada, K., 2004. Continuous approximation of material distribution for topology optimization. Int. J. Numer. Methods Eng. 59, 19251944. https://doi.org/10.1002/nme.945CrossRefGoogle Scholar
Munk, D.J., Kipouros, T., Vio, G.A., Parks, G.T., Steven, G.P., 2018. Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization method. Struct. Multidiscip. Optim. 57, 665688. https://doi.org/10.1007/s00158-017-1781-6CrossRefGoogle Scholar
Nguyen, V.P., Anitescu, C., Bordas, S.P.A., Rabczuk, T., 2015. Isogeometric analysis: An overview and computer implementation aspects. Math. Comput. Simul. 117, 89116. https://doi.org/10.1016/j.matcom.2015.05.008CrossRefGoogle Scholar
Paulino, G.H., Le, C.H., 2009. A modified Q4/Q4 element for topology optimization. Struct. Multidiscip. Optim. 37, 255264. https://doi.org/10.1007/s00158-008-0228-5CrossRefGoogle Scholar
Picelli, R., Townsend, S., Brampton, C., Norato, J., Kim, H.A., 2018. Stress-based shape and topology optimization with the level set method. Comput. Methods Appl. Mech. Eng. 329, 123. https://doi.org/10.1016/j.cma.2017.09.001CrossRefGoogle Scholar
Proos, K., Steven, G., Querin, O., Xie, Y., 2001. Multicriterion evolutionary structural optimization using the weighting and the global criterion methods. AIAA J. 39, 20062012. https://doi.org/10.2514/3.14961CrossRefGoogle Scholar
Rahmatalla, S.F., Swan, C.C., 2004. A Q4/Q4 continuum structural topology optimization implementation. Struct. Multidiscip. Optim. 27, 130135. https://doi.org/10.1007/s00158-003-0365-9CrossRefGoogle Scholar
Rodríguez, S., Pavanello, R., 2015. Thermo-mechanical multi-objective Bidirectional Evolutionary Structural Optimization using weighted sum method for mean compliance and heat conduction problem, in: 11th Argentine Congress on Computational Mechanics (PANACM). Presented at the 11th Argentine Congress on Computational Mechanics (PANACM), ,Buenos Aires, Argentine.Google Scholar
Seo, Y.-D., Kim, H.-J., Youn, S.-K., 2010. Isogeometric topology optimization using trimmed spline surfaces. Comput. Methods Appl. Mech. Eng. 199, 32703296. https://doi.org/10.1016/j.cma.2010.06.033CrossRefGoogle Scholar
Shao, X., Chen, Z., Fu, M., Gao, L., 2007. Multi-objective Topology Optimization of Structures Using NN-OC Algorithms*. pp. 204212. https://doi.org/10.1007/978-3-540-72395-0_26Google Scholar
Sigmund, O., Petersson, J., 1998. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 6875. https://doi.org/10.1007/BF01214002CrossRefGoogle Scholar
Song, S., 2004. Shared Understanding, Sketching, and Information Seeking and Sharing Behavior in the New Product Design Process. University of California, Berkeley.Google Scholar
Vantyghem, G., Steeman, M., Boel, V., De Corte, W., 2018. Multi-physics topology optimization for 3D-printed structures, in: Proceedings of the IASS Symposium 2018. Presented at the Creativity in Structural Design, Boston, USA.Google Scholar
Yang, D., Liu, H., Zhang, W., Li, S., 2018. Stress-constrained topology optimization based on maximum stress measures. Comput. Struct. 198, 2339. https://doi.org/10.1016/j.compstruc.2018.01.008CrossRefGoogle Scholar
Yao, X., Moon, S.K., Bi, G., 2017. Multidisciplinary design optimization to identify additive manufacturing resources in customized product development. J. Comput. Des. Eng. 4, 131142. https://doi.org/10.1016/j.jcde.2016.10.001Google Scholar
Zolfagharian, A., Denk, M., Bodaghi, M., Kouzani, A.Z., Kaynak, A., 2020a. Topology-Optimized 4D Printing of a Soft Actuator. Acta Mech. Solida Sin. 33, 418430. https://doi.org/10.1007/s10338-019-00137-zCrossRefGoogle Scholar
Zolfagharian, A., Denk, M., Kouzani, A., Bodaghi, B., Nahavandi, S., Kaynak, A., 2020b. Effects of Topology Optimization in Multimaterial 3D Bioprinting of Soft Actuators. Int. J. Bioprinting 6. https://doi.org/10.18063/ijb.v6i2.260CrossRefGoogle Scholar