Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T19:11:36.483Z Has data issue: false hasContentIssue false

Calabi–Yau Double Coverings of Fano–Enriques Threefolds

Published online by Cambridge University Press:  28 August 2018

Nam-Hoon Lee*
Affiliation:
Department of Mathematics Education, Hongik University 42-1, Sangsu-Dong, Mapo-Gu, Seoul 121-791, Korea (nhlee@hongik.ac.kr; nhlee@kias.re.kr) School of Mathematics, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul 130-722, South Korea

Abstract

This note is a report on the observation that the Fano–Enriques threefolds with terminal cyclic quotient singularities admit Calabi–Yau threefolds as their double coverings. We calculate the invariants of those Calabi–Yau threefolds when the Picard number is one. It turns out that all of them are new examples.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bayle, L., Classification des variétés complexes projectives de dimension trois dont une section hyperplane générale est une surface d'Enriques, J. Reine Angew. Math. 449 (1994), 963.Google Scholar
2.Cheltsov, I. A., Rationality of an Enriques–Fano threefold of genus five, Izv. Ross. Akad. Nauk Ser. Mat. 68(3) (2004), 181194; translation in Izv. Math. 68(3) (2004), 607–618.Google Scholar
3.Conte, A. and Murre, J. P., Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12(1) (1985), 4380.Google Scholar
4.Cynk, S., Cyclic coverings of Fano threefolds, Proceedings of Conference on Complex Analysis (Bielsko-Biała, 2001). Ann. Polon. Math. 80 (2003), 117124.Google Scholar
5.Fano, G., Sulle varieta algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno, Mem. Mat. Sci. Fis. Natur. Soc. Ital. Sci. (3) 24 (1938), 4166.Google Scholar
6.Giraldo, L., Lopez, A. F. and Muñoz, R., On the existence of Enriques–Fano threefolds of index greater than one, J. Algebraic Geom. 13(1) (2004), 143166.Google Scholar
7.Gross, M., Primitive Calabi–Yau threefolds, J. Differ. Geom. 45(2) (1997), 288318.Google Scholar
8.Kapustka, G., Projections of del Pezzo surfaces and Calabi–Yau threefolds, Adv. Geom. 15(2) (2015), 143158.Google Scholar
9.Lee, N.-H., Calabi–Yau coverings over some singular varieties and new Calabi–Yau 3-folds with Picard number one, Manuscr. Math. 125(4) (2008), 531547.Google Scholar
10.Minagawa, T., Deformations of ℚ-Calabi–Yau 3-folds and ℚ-Fano 3-folds of Fano index 1, J. Math. Sci. Univ. Tokyo 6(2) (1999), 397414.Google Scholar
11.Prokhorov, Yu. G., On three-dimensional varieties with hyperplane sections – Enriques surfaces, Mat. Sb. 186(9) (1995), 113124; translation in Sb. Math. 186(9) (1995), 1341–1352.Google Scholar
12.Prokhorov, Yu., On Fano–Enriques varieties, Mat. Sb. 198(4) (2007), 117134; translation in Sb. Math. 198(3–4) (2007), 559–574.Google Scholar
13.Sano, T., On classifications of non-Gorenstein Q-Fano 3-folds of Fano index 1, J. Math. Soc. Japan 47(2) (1995), 369380.Google Scholar