Published online by Cambridge University Press: 22 August 2023
Given a Borel probability measure µ on $\mathbb{R}^n$ and a real matrix
$R\in M_n(\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set
$\Lambda\subset \mathbb{R}^n$ such that the sets
$E_\Lambda=\big\{{\rm e}^{2\pi i \langle\lambda,x\rangle}:\lambda\in \Lambda\big\}$ and
$E_{R\Lambda}=\big\{{\rm e}^{2\pi i \langle R\lambda,x\rangle}:\lambda\in \Lambda\big\}$ are both orthonormal bases for the Hilbert space
$L^2(\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure
$\mu_{M,D}$ generated by an expanding integer matrix
$M\in M_2(2\mathbb{Z})$ and the four-elements digit set
$D = \{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of
$\mu_{M,D}$ are given.