Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T03:58:51.932Z Has data issue: false hasContentIssue false

Classification of irreducible Harish-Chandra modules over generalized Virasoro algebras

Published online by Cambridge University Press:  12 April 2012

Xiangqian Guo
Affiliation:
Department of Mathematics, Zhengzhou university, Zhengzhou 450001, Henan, People's Republic of China (guoxq@amss.ac.cn)
Rencai Lu
Affiliation:
Department of Mathematics, Suzhou University, Suzhou 215006, Jiangsu, People's Republic of China (rencail@amss.ac.cn)
Kaiming Zhao
Affiliation:
Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada (kzhao@wlu.ca) and College of Mathematics and Information Science, Hebei Normal (Teachers) University, Shijiazhuang, Hebei 050016, People's Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be an arbitrary non-zero additive subgroup of the complex number field ℂ, and let Vir[G] be the corresponding generalized Virasoro algebra over ℂ. In this paper we determine all irreducible weight modules with finite-dimensional weight spaces over Vir[G]. The classification strongly depends on the index group G. If G does not have a direct summand isomorphic to ℤ (the integers), then such irreducible modules over Vir[G] are only modules of intermediate series whose weight spaces are all one dimensional. Otherwise, there is one further class of modules that are constructed by using intermediate series modules over a generalized Virasoro subalgebra Vir[G0] of Vir[G] for a direct summand G0 of G with G = G0 ⊕ ℤb, where bG \ G0. This class of irreducible weight modules do not have corresponding weight modules for the classical Virasoro algebra.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2012

References

1.Billig, Y. and Zhao, K., Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Alg. 191 (2004), 2342.CrossRefGoogle Scholar
2.Dong, C. and Lepowsky, J., Generalized vertex algebras and relative vertex operator, Progress in Mathematics, Volume 112 (Birkhäuser, Boston, MA, 1993).CrossRefGoogle Scholar
3.Goddard, P. and Olive, D., Kac–Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A1 (1986), 303414.CrossRefGoogle Scholar
4.Hu, J., Wang, X. and Zhao, K., Verma modules over generalized Virasoro algebras Vir[G], J. Pure Appl. Alg. 177 (2003), 6169.CrossRefGoogle Scholar
5.Jacob, M., Dual theory (North-Holland, Amsterdam, 1974).Google Scholar
6.Kac, V. G., Infinite-dimensional Lie algebras, 3rd edn (Cambridge University Press, 1990).CrossRefGoogle Scholar
7.Kac, V. G. and Peterson, D. H., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984), 125264.CrossRefGoogle Scholar
8.Kac, V. and Raina, A., Bombay lectures on highest weight representations of infinite dimensional Lie algebras (World Scientific, Singapore, 1987).Google Scholar
9.Kaplansky, I., Infinite abelian groups, revised edn (The University of Michigan Press, Ann Arbor, MI, 1969).Google Scholar
10.Kaplansky, I., The Virasoro algebra, Commun. Math. Phys. 86 (1982), 4954.CrossRefGoogle Scholar
11.Khomenko, A. and Mazorchuk, V., Generalized Verma modules over the Lie algebra of type G 2, Commun. Alg. 27 (1999), 777783.CrossRefGoogle Scholar
12.Lu, R. and Zhao, K., Classification of irreducible weight modules over higher rank Virasoro algeras, Adv. Math. 206 (2006), 630656.CrossRefGoogle Scholar
13.Lu, R. and Zhao, K., Classification of irreducible weight modules over the twisted Heisenberg–Virasoro algebra, Commun. Contemp. Math. 12 (2010), 183205.CrossRefGoogle Scholar
14.Martin, C. and Piard, A., Nonbounded indecomposable admissible modules over the Virasoro algebra, Lett. Math. Phys. 23 (1991), 319324.CrossRefGoogle Scholar
15.Mathieu, O., Classification of Harish-Chandra modules over the Virasoro algebra, Invent. Math. 107 (1992), 225234.CrossRefGoogle Scholar
16.Mazorchuk, V., On unitarizable modules over generalized Virasoro algebras, Ukrain. Math. J. 50 (1998), 14611463.CrossRefGoogle Scholar
17.Mazorchuk, V., On the support of irreducible modules over the Witt–Kaplansky algebras of rank (2, 2), Mathematika 45 (1998), 381389.CrossRefGoogle Scholar
18.Mazorchuk, V., Classification of simple Harish-Chandra modules over ℚ-Virasoro algebra, Math. Nachr. 209 (2000), 171177.3.0.CO;2-B>CrossRefGoogle Scholar
19.Mazorchuk, V. and Zhao, K., Classification of simple weight Virasoro modules with a finite-dimensional weight space, J. Alg. 307 (2007), 209214.CrossRefGoogle Scholar
20.Patera, J. and Zassenhaus, H., The higher rank Virasoro algebras, Commun. Math. Phys. 136 (1991), 114.CrossRefGoogle Scholar
21.Su, Y., Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras, J. Math. Phys. 35 (1994), 20132023.CrossRefGoogle Scholar
22.Su, Y., Simple modules over the high rank Virasoro algebras, Commun. Alg. 29 (2001), 20672080.Google Scholar
23.Su, Y., Classification of Harish-Chandra modules over the higher rank Virasoro algebras, Commun. Math. Phys. 240 (2003), 539551.CrossRefGoogle Scholar
24.Su, Y. and Zhao, K., Generalized Virasoro and super-Virasoro algebras and modules of intermediate series, J. Alg. 252 (2002), 119.CrossRefGoogle Scholar