Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T07:21:31.741Z Has data issue: false hasContentIssue false

Embeddings into efficient groups

Published online by Cambridge University Press:  20 January 2009

Jens Harlander
Affiliation:
FB Mathematik, Universität Frankfurt, Robert-Mayer-Str. 8, 60054 Frankfurt/Main, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A finite presentation F/N of a group G is called efficient if dF(N) = d(H2(G)) + d(F) – r(H1(G)). A finitely presented group is called efficient if it admits an efficient presentation. We show that a finitely presented group embeds into an efficient group.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1997

References

REFERENCES

1. Baik, Y. G., Generators of the second homotopy module of group presentations with applications (Ph.D. thesis, Glasgow University, 1992).Google Scholar
2. Baik, Y. G. and Pride, S. J., Generators of the second homotopy module of presentations arising from group constructions, preprint, Glasgow University, 1993.Google Scholar
3. Baik, Y. G. and Pride, S. J., On the efficiency of Coxeter-groups, preprint, University of Glasgow, 1995.Google Scholar
4. Beyl, F. R., The Schur-multiplicator of metacyclic groups, Proc. Amer. Math. Soc. 40 (1973), 413418.CrossRefGoogle Scholar
5. Beyl, F. R. and Tappe, J., Group Extensions, Representations, and the Schur Multiplicator (Lecture Notes in Mathematics 958, Springer-Verlag, 1982).Google Scholar
6. Beyl, F. R. and Rosenberger, G., Efficient presentations of GL(2, Z) and PGL(2, Z), in Groups-St Andrews 1985 (Robertson, E. F. and Campbell, C. M. eds, LMS Lecture Notes 121, Cambridge University Press 1986), 135137.Google Scholar
7. Bieri, R., Homological Dimension of Discrete Groups (Queen Mary College Mathematics Notes, London, 1976).Google Scholar
8. Bogley, W. A., J. H. C. Whiteheads's asphericity question, in Two-dimensional Homotopy and Combinatorial Group Theory (edited by Hog-Angeloni, C., Metzler, W. and Sieradski, A. J., LMS Lecture Notes 197, Cambridge University Press 1993).Google Scholar
9. Brown, K., Cohomology of Groups (Graduate Texts in Mathematics 87, Springer, New York, 1982).Google Scholar
10. Campbell, C. M., Robertson, E. F. and Williams, P. D., Efficient presentations for finite simple groups and related groups, in Groups-Korea 1988 (Kim, A. C. and Neumann, B. H. eds, Lecture Notes in Mathematics 1398, Springer-Verlag, 1989), 6572.CrossRefGoogle Scholar
11. Campbell, C. M., Robertson, E. F. and Williams, P. D., On the efficiency of some direct powers of groups, in Groups-Canberra 1989 (Kovacs, L. G. ed, Lecture Notes in Mathematics 1456, Springer-Verlag, 1990), 6572.Google Scholar
12. Dyer, M. N., Crossed modules and π2-homotopy modules, in Two-dimensional Homotopy and Combinatorial Group Theory (edited by Hog-Angeloni, C., Metzler, W. and Sieradski, A. J., LMS Lecture Notes 197, Cambridge University Press 1993).Google Scholar
13. Epstein, D. B. A., Finite presentations of groups and 3-manifolds, Quart. J. Math. Oxford (2) 12 (1961), 205212.CrossRefGoogle Scholar
14. Hannerbauer, T., Relation modules of amalgamated free products and HNN-extentions, Glasgow Math. J. 31 (1989), 263270.CrossRefGoogle Scholar
15. Harlander, J., Closing the relation gap by direct product stabilization, J. Algebra, to appear.Google Scholar
16. Hog-Angeloni, C. and Metzler, W., Stabilization by free products giving rise to Andrews-Curtis equivalence, Note Mat. 10, Supp. n. 2 (1990), 305314.Google Scholar
17. Gutierrez, M. A. and Ratcliffe, J. G., On the second homotopy group, Quart. J. Math. Oxford (2) 32 (1981), 4555.Google Scholar
18. Johnson, D. L. and Robertson, E. F., Finite groups of deficiency zero, in: Homological Group Theory (Wall, C. T. C. ed, LMS Lecture Notes Series 36, Cambridge University Press 1979).Google Scholar
19. Kaplansky, I., Fields and Rings (University of Chicago Press 1972).Google Scholar
20. Kenne, P. E., Some new efficient soluble groups, Comm. Algebra 18 (1990), 27472753.CrossRefGoogle Scholar
21. Lustig, M., Fox-ideals, Af-torsion and applications to groups and 3-manifolds, in Two Dimensional Homotopy and Combinatorial Group Theory (edited by Hog-Angeloni, C., Metzler, W. and Sieradski, A., London Math. Soc. Lecture Notes 197, Cambridge University Press, 1993).Google Scholar
22. Lyndon, R. C. and Schupp, P. E., Combinatorial Group Theory (Springer-Verlag, Berlin-Heidelberg-New York, 1977).Google Scholar
23. Metzler, W., Die Unterscheidung von Homotopie-Typ und einfachem Homotopie-Typ bei 2-dimensionalen Komplexen, J. Reine Angew. Math. 403 (1990), 201219.Google Scholar
24. Robertson, E. F., Thomas, R. M. and Wotherspoon, C. I., A class of inefficient groups with symmetric presentations, preprint, University of St Andrews, 1994.Google Scholar
25. Stallings, J. R., On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968), 312334.CrossRefGoogle Scholar
26. Swan, R. G., Minimal resolutions for finite groups, Topology 4 (1985), 193208.Google Scholar
27. Wamsley, J. W., The deficiency of metacyclic groups, Proc. Amer. Math. Soc. 24 (1970), 724726.Google Scholar