Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T07:49:16.910Z Has data issue: false hasContentIssue false

Evaluation of Permanents

Published online by Cambridge University Press:  20 January 2009

Henryk Minc
Affiliation:
University of CaliforniaSanta Barbara
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The permanent of an m x n matrix A = (aij), mn, is defined by

where the summation is over all one-to-one functions σ from {1, … , m} to { 1, …, n}. In other words, the permanent of A is the sum of all the diagonal products of A, that is, all the products of m entries of A no two of which lie in the same row or in the same column. Thus the permanent of A may be evaluated by first multiplying all the row sums of A and then subtracting from the product all terms that contain as factors two or more entries from the same column of A. This is the idea behind the formulas of Binet and of Ryser.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1979

References

REFERENCES

(1) Binet, J., Mémoire sur un systeme de formules analytiques, et leur application à des considérations géométriques, J. de I'Éc. Polyt. 9 (1812), 280302.Google Scholar
(2) Cacuhy, A. L., Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu'elles renferment, J. de I'Ec. Polyt. 10 (1812), Cah. 17, 29112; Oeuvres (2)i.Google Scholar
(3) Joachimstal, F., De aequationibus quarti et sexti gradus quae in theoria linearum et superficierum secundi gradus occurunt, Crelle's J., 53 (1856), 149172.Google Scholar
(4) Ryser, H. J., Combinatorial Mathematics (Carus Math. Monograph No. 14, 1963).CrossRefGoogle Scholar