Published online by Cambridge University Press: 20 January 2009
The definitions of finite dimensional baric, train, and special train algebras, and of genetic algebras in the senses of Schafer and Gonshor (which coincide when the ground field is algebraically closed, and which I call special triangular) are given in Worz-Busekros's monograph [8]. In [6] I introduced applications requiring infinite dimensional generalisations. The elements of these algebras were infinite linear forms in basis elements a0, a1,… and complex coefficients such that In this paper I consider only algebras whose elements are forms which only a finite number of the xi are non zero.