No CrossRef data available.
Article contents
A Generalisation of a Formula due to Schubert
Published online by Cambridge University Press: 20 January 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let there be given, on an algebraic curve C, of genus p, a linear series and an algebraic series of index v, both without fixed points. The number of groups of r + 1 points which are common to a set of and a set of has been shown by Schubert (1) to be
where d is the number of double points of .
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 11 , Issue 2 , November 1958 , pp. 79 - 82
- Copyright
- Copyright © Edinburgh Mathematical Society 1958
References
REFERENCES
(1) Baker, H. F., Principles of Geometry, vol. VI, Cambridge University Press, 1925, p. 37.Google Scholar
(2) Baker, H. F., Principles of Geometry, vol. VI, Cambridge University Press, 1925, pp. 8, 9.Google Scholar
(3) Baker, H. F., Principles of Geometry, vol. VI, Cambridge University Press, 1925, p. 10.Google Scholar
You have
Access