Published online by Cambridge University Press: 20 January 2009
Methods for solving boundary value problems in linear, second order, partial differential equations in two variables tend to be somewhat rigidly partitioned in some of the standard text-books. Problems for elliptic equations are sometimes solved by finding the fundamental solution which is defined as a solution with a given singularity at a certain point. Another approach is by way of Green's functions which are usually defined as solutions of the original homogeneous equations now made inhomogeneous by the introduction of adelta function on the right hand side. The Green's function coincides with the fundamental solution for elliptic equations but exhibits a totally different type of singularity for parabolic or hyperbolic equations. Boundary value problems for hyperbolic equations can often by solved by Riemann's method which depends on the existence of an auxiliary function called the Riemann or sometimes the Riemann-Green function. The main object of this paper is to show the close relationship between Riemann's method and the method of Green's functions. This not only serves to unify different methods of solution of boundary value problems but also provides an additional method of determining Riemann functions for given hyperbolic equations. Before establishing these relationships we shall survey the general approach to boundary value problems through the use of the Green's function.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.