Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-20T20:27:36.541Z Has data issue: false hasContentIssue false

Projectively and affinely invariant PDEs on hypersurfaces

Published online by Cambridge University Press:  25 April 2024

Dmitri Alekseevsky
Affiliation:
Department of Algebra and Number Theory, Institute for Information Transmission Problems, Moscow, Russia Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
Gianni Manno*
Affiliation:
Dipartimento di Matematica ‘G. L. Lagrange’, Politecnico di Torino, Torino, Italy
Giovanni Moreno
Affiliation:
Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Warszawa, Poland
*
Corresponding author: Gianni Manno, email: giovanni.manno@polito.it

Abstract

In Communications in Contemporary Mathematics 24 3, (2022),the authors have developed a method for constructing G-invariant partial differential equations (PDEs) imposed on hypersurfaces of an $(n+1)$-dimensional homogeneous space $G/H$, under mild assumptions on the Lie group G. In the present paper, the method is applied to the case when $G=\mathsf{PGL}(n+1)$ (respectively, $G=\mathsf{Aff}(n+1)$) and the homogeneous space $G/H$ is the $(n+1)$-dimensional projective $\mathbb{P}^{n+1}$ (respectively, affine $\mathbb{A}^{n+1}$) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with n independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of trace-free cubic forms in n variables with respect to the group $\mathsf{CO}(d,n-d)$ of conformal transformations of $\mathbb{R}^{d,n-d}$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseevsky, D. V., Gutt, J., Manno, G. and Moreno, G., A general method to construct invariant PDEs on homogeneous manifolds, Communications in Contemporary Mathematics 24(3) (2022), . doi:10.1142/s0219199720500893Google Scholar
An-Min, L., Udo, S., Guosong, Z. and Zejun, H., Global Affine Differential Geometry of Hypersurfaces, Volume 11 of De Gruyter Expositions in Mathematics (Berlin: De Gruyter, 2015). doi:10.1515/9783110268898.Google Scholar
Blaschke, W., Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II: Affine Differentialgeometrie (Grundlehren der mathematischen Wissenschaften) (German Edition), Volume 7 of Grundlehren der mathematischen Wissenschaften (Berlin - Heidelberg: Springer, 1923), https://www.xarg.org/ref/a/3642471250/.CrossRefGoogle Scholar
Cheng, S.-Y. and Yau, S.-T., Complete affine hypersurfaces. Part I. The completeness of affine metrics, Communications on Pure and Applied Mathematics 39(6) (1986), 839866, doi:10.1002/cpa.3160390606.Google Scholar
Ivey, T. A. and Landsberg, J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Volume 61 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2003).Google Scholar
Krasil’shchik, I. S., Lychagin, V. V. and Vinogradov, A. M., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Volume 1 of Advanced studies in contemporary mathematics (New York- London- Paris - Montreux - Tokyo: Gordon and Breach, 1986).Google Scholar
Kushner, A., Lychagin, V. and Rubtsov, V., Contact Geometry and Non-Linear Differential Equations, Volume 101 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2007).Google Scholar
Manno, D., Oliveri, F. and Vitolo, R., Differential equations uniquely determined by algebras of point symmetries, Teoret. Mat. Fiz. 151(3) (2007), 486494. doi:10.1007/s11232-007-0069-1Google Scholar
Alekseevsky, D., Manno, G. and Moreno, G., Third-order affine and projective-invariant (systems of) PDEs in two independent variables as vanishing of the Fubini-Pick invariant, (2024), arXiv, https://arxiv.org/abs/2202.09894.Google Scholar
Onishchik, A. L. and Vinberg, E. B., Lie Group and Algebraic Groups, Springer Series in Soviet Mathematics (Springer, Berlin, Germany, 1990).Google Scholar
Parshin, A. N. and Shafarevich, I. R., editors, Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences, 1994 ed. (Springer, Berlin, Germany, 1994).Google Scholar
Saunders, D. J., The Geometry of Jet Bundles, Volume 142 of London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 1989). doi:10.1017/CBO9780511526411Google Scholar
Springer, T., Invariant Theory (Springer, Berlin, Germany, 1977).CrossRefGoogle Scholar
Yamaguchi, K., Contact geometry of higher order, Japan. J. Math. (N.S.) 8(1) (1982), 109176.CrossRefGoogle Scholar