Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-29T09:24:54.576Z Has data issue: false hasContentIssue false

Abundance of zirconium in the atmospheres of red giants in Galactic globular cluster 47 Tuc

Published online by Cambridge University Press:  11 March 2020

Edgaras Kolomiecas
Affiliation:
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio av. 3, LT-10222, Vilnius, Lithuania emails: edgaras.kolomiecas@ff.vu.lt, vidas.dobrovolskas@tfai.vu.lt, arunas.kucinskas@tfai.vu.lt
Vidas Dobrovolskas
Affiliation:
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio av. 3, LT-10222, Vilnius, Lithuania emails: edgaras.kolomiecas@ff.vu.lt, vidas.dobrovolskas@tfai.vu.lt, arunas.kucinskas@tfai.vu.lt
Arūnas Kučinskas
Affiliation:
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio av. 3, LT-10222, Vilnius, Lithuania emails: edgaras.kolomiecas@ff.vu.lt, vidas.dobrovolskas@tfai.vu.lt, arunas.kucinskas@tfai.vu.lt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determined zirconium abundance in the atmospheres of 327 red giant branch (RGB) stars in the globular cluster 47 Tuc. The 1D LTE abundances were obtained from the archival VLT GIRAFFE spectra, using 1D hydrostaticATLAS9 stellar model atmospheres and synthetic Zr I line profiles computed with theSYNTHE package. The average zirconium abundance determined in the sample of RGB stars, 〈[Zr/Fe]〉 = +0.38 ± 0.12, agrees well with zirconium abundances obtained at this metallicity in the Galactic field stars, as well as with those observed in other Galactic globular clusters.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alonso, A., Arribas, S., & Martnez-Roger, C. 1999, A&AS, 140, 261Google Scholar
Bastian, N., Lamers, H. J. G. L. M., de Mink, S. E., Longmore, S. N., Goodwin, S. P., & Gieles, M. 2013, MNRAS, 436, 2398CrossRefGoogle Scholar
Bastian, N. & Lardo, C. 2018, ARA&A, 56, 83CrossRefGoogle Scholar
Bergbusch, P. A. & Stetson, P. B. 2009, AJ, 138, 1455CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., Lucatello, S., Catanzaro, G., Leone, F., Bellazzini, M., Claudi, R., D’Orazi, V., Momany, Y., Ortolani, S., Pancino, E., Piotto, G., Recio-Blanco, A., & Sabbi, E. 2009, A&A, 505, 117Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007a, A&A, 464, 1029Google Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007b, A&A, 475, 859Google Scholar
Gratton, R. G., Lucatello, S., Sollima, A., Carretta, E., Bragaglia, A., Momany, Y., D’Orazi, V., Cassisi, S., Pietrinferni, A., & Salaris, M. 2013, A&A, 549, A41Google Scholar
Krause, M., Charbonnel, C., Decressin, T., Meynet, G., & Prantzos, N. 2013, A&A, 552, A121Google Scholar
Ramrez, I., & Meléndez, J. 2005, ApJ, 626, 465CrossRefGoogle Scholar
Straniero, O., Cristallo, S., & Piersanti, L. 2014, ApJ, 785, 77CrossRefGoogle Scholar
Ventura, P., D’Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ, 550, L65CrossRefGoogle Scholar