Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T11:29:51.428Z Has data issue: false hasContentIssue false

Afterglow light curves from magnetized GRB flows

Published online by Cambridge University Press:  24 February 2011

Petar Mimica
Affiliation:
Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100, Burjassot, Spain email: Petar.Mimica@uv.es
Dimitrios Giannios
Affiliation:
Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, USA
Miguel Ángel Aloy
Affiliation:
Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100, Burjassot, Spain email: Petar.Mimica@uv.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the RMHD code MRGENESIS and the radiative transfer code SPEV we compute multiwavelength afterglow light curves of magnetized ejecta of gamma-ray bursts interacting with a uniform circumburst medium. We are interested in the emission from the reverse shock when ejecta magnetization varies from σ0 = 0 to σ0 = 1. For typical parameters of the ejecta, the emission from the reverse shock peaks for magnetization σ0 ~ 0.01 − 0.1, and is suppressed for higher σ0. We fit the early afterglow light curves of GRB 990123 and 090102 and discuss the possible magnetization of the outflows of these bursts. Finally we discuss the amount energy left in the magnetic field which is available for dissipation at later afterglow stages.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Akerlof, C., et al. , 1999, Nature, 398, 400CrossRefGoogle Scholar
Aloy, M. A., Janka, H. T., Müller, E., 2005, A&A, 436, 273Google Scholar
Briggs, M. S., et al. , 1999, ApJ, 524, 82CrossRefGoogle Scholar
Burrows, D. N., et al. 2005, Science, 309, 1833CrossRefGoogle Scholar
Fan, Y. Z., et al. , 2004b, MNRAS, 354, 1031CrossRefGoogle Scholar
Gendre, B., et al. , 2009, MNRAS, 405, 2372Google Scholar
Giannios, D., 2006, A&A, 455, L5Google Scholar
Giannios, D., 2008, A&A, 480, 305Google Scholar
Giannios, D., et al. , 2008, A&A, 478, 747Google Scholar
Goodman, J., 1986, ApJ, 308, L47CrossRefGoogle Scholar
Komissarov, S. S., et al. , 2009, MNRAS, 394, 1182CrossRefGoogle Scholar
Lyubarsky, Y. E., 2010, MNRAS, 402, 353CrossRefGoogle Scholar
Lyutikov, M. & Blandford, R., 2003, ArXiv:astro-ph/0312347Google Scholar
Meszaros, P. & Rees, M. J., 1997, ApJ, 482, L29CrossRefGoogle Scholar
Mimica, P. & Aloy, M. A., 2010, MNRAS, 401, 525CrossRefGoogle Scholar
Mimica, P., et al. , 2009a, A&A, 494, 879Google Scholar
Mimica, P., et al. , 2009b ApJ, 696, 1142CrossRefGoogle Scholar
Mimica, P., et al. , 2010, MNRAS, 407, 2501CrossRefGoogle Scholar
Paczynski, B., 1986, ApJ, 308, L43CrossRefGoogle Scholar
Spruit, H. C., et al. , 2001, A&A, 369, 694Google Scholar
Steele, I. A., et al. , 2009, Nature, 462, 767CrossRefGoogle Scholar
Tchekhovskoy, A., et al. , 2009, ApJ, 699, 1789CrossRefGoogle Scholar
Thompson, C., 1994, MNRAS, 270, 480CrossRefGoogle Scholar
Usov, V. V., 1992, Nature, 357, 472Google Scholar
Zhang, B., et al. , 2003, ApJ, 595, 950CrossRefGoogle Scholar