Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T10:57:29.686Z Has data issue: false hasContentIssue false

AGN and Star Formation Feedback in Galaxy Outflows

Published online by Cambridge University Press:  07 April 2020

Elisabete M. de Gouveia Dal Pino
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG), Universidade de São Paulo, CEP 05508-090, São Paulo, Brazil emails: dalpino@iag.usp.br, weclavijob@usp.br
William Clavijo-Bohórquez
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG), Universidade de São Paulo, CEP 05508-090, São Paulo, Brazil emails: dalpino@iag.usp.br, weclavijob@usp.br
Claudio Melioli
Affiliation:
University of Modena, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Large-scale, broad outflows are common in active galaxies. In systems where star formation coexists with an AGN, it is unclear yet the role that both play on driving the outflows. In this work we present three-dimensional radiative-cooling MHD simulations of the formation of these outflows, considering the feedback from both the AGN and supernovae-driven winds. We find that a large-opening-angle AGN wind develops fountain structures that make the expanding gas to fallback. Furthermore, it exhausts the gas near the nuclear region, extinguishing star formation and accretion within a few 100.000 yr, which establishes the duty cycle of these outflows. The AGN wind accounts for the highest speed features in the outflow with velocities around 10.000 km s−1 (as observed in UFOs), but these are not as cold and dense as required by observations of molecular outflows. The SNe-driven wind is the main responsible for the observed mass-loading of the outflows.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Dasyra, K. M & Combes, F. 2012, A&A, 541, L7Google Scholar
Amari, S., Hoppe, P., Zinner, E., & Lewis, R.S. 1995, ApJ, 30, 490Google Scholar
Kraemer, S. B., Tombesi, F., & Bottorff, M. C. 2018, ApJ, 852, 3510.3847/1538-4357/aa9ce0CrossRefGoogle Scholar
Melioli, C., & de Gouveia Dal Pino, E. M. 2015, ApJ, 812, 9010.1088/0004-637X/812/2/90CrossRefGoogle Scholar
Morganti, R., Oosterloo, T. A., Tadhunter, C. N., van Moorsel, G., & Emonts, B., 2005 A&A, 439, 521Google Scholar
Morganti, R., Frieswijk, W., Oonk, R. J. B., Oosterloo, T., & Tadhunter, C. 2013, A&A, 552, L4Google Scholar
Morganti, R., Oosterloo, T. A., Oonk, J. B. R., Frieswijk, W., & Tadhunter, C. N. 2015, ASP-CS, 499, 125Google Scholar
Oosterloo, T. A., Morganti, R., Tzioumis, A., Reynolds, J., King, E., McCulloch, P., & Tsvetanov, Z. 2000, AJ, 119, 208510.1086/301358CrossRefGoogle Scholar
Tadhunter, C., Morganti, R., Rose, M., Oonk, J. B. R., & Oosterloo, T. 2014, Nature, 511, 44010.1038/nature13520CrossRefGoogle Scholar
Tombesi, F., Cappi, M., Reeves, J. N., Palumbo, G. G. C., Braito, V., & Dadina, M. 2011, ApJ, 742, 4410.1088/0004-637X/742/1/44CrossRefGoogle Scholar
Tombesi, F., Cappi, M., Reeves, J. N., Nemmen, R. S., Braito, V., Gaspari, M., & Reynolds, S. 2013, MNRAS, 430, 110210.1093/mnras/sts692CrossRefGoogle Scholar
Tombesi, F., Meléndez, M., Veilleux, S., Reeves, J.M., González-Alfonso, C., & Reynolds, C. S. 2015, Nature, 519, 43610.1038/nature14261CrossRefGoogle Scholar
Wagner, A. Y., Umemura, M., & Bicknell, G. V. 2013, ApJ, 763, L1810.1088/2041-8205/763/1/L18CrossRefGoogle Scholar
Wang, J., Fabbiano, G., Risaliti, G., Elvis, M., Mundell, C. G., Dumas, G., Schinnerer, E., & Zezas, A. 2010, ApJ, 719, L20810.1088/2041-8205/719/2/L208CrossRefGoogle Scholar