Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T14:55:51.029Z Has data issue: false hasContentIssue false

Asteroseismology of red giants to constrain angular momentum transport

Published online by Cambridge University Press:  23 January 2015

P. Eggenberger*
Affiliation:
Geneva Observatory, University of Geneva, Maillettes 51, 1290, Sauverny, Switzerland email: patrick.eggenberger@unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Asteroseismic data obtained by the Kepler spacecraft have led to the recent detection and characterization of rotational frequency splittings of mixed modes in red-giant stars. This has opened the way to the determination of the core rotation rates for these stars, which is of prime importance to progress in our understanding of internal angular momentum transport. In this contribution, we discuss which constraints can be brought by these asteroseismic measurements on the modelling of angular momentum transport in stellar radiative zones.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature 481, 55CrossRefGoogle Scholar
Brown, T. M., Christensen-Dalsgaard, J., Dziembowski, W. A., et al. 1989, ApJ 343, 526Google Scholar
Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J., & Paxton, B. 2014, ApJ 788, 93Google Scholar
Ceillier, T., Eggenberger, P., García, R. A., & Mathis, S. 2012, Astronomische Nachrichten 333, 971Google Scholar
Ceillier, T., Eggenberger, P., García, R. A., & Mathis, S. 2013, A&A 555, A54Google Scholar
Chaboyer, B., Demarque, P., & Pinsonneault, M. H. 1995, ApJ 441, 865Google Scholar
Charbonnel, C. & Talon, S. 2005, Science 309, 2189Google Scholar
Couvidat, S., García, R. A., Turck-Chièze, S., et al. 2003, ApJ (Letters) 597, L77Google Scholar
Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A&A 564, A27Google Scholar
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ 756, 19Google Scholar
Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A 440, L9Google Scholar
Eggenberger, P., Miglio, A., Montalban, J., et al. 2010, A&A 509, A72Google Scholar
Eggenberger, P., Montalbán, J., & Miglio, A. 2012, A&A 544, L4Google Scholar
Elsworth, Y., Howe, R., Isaak, G. R., et al. 1995, Nature 376, 669Google Scholar
García, R. A., Turck-Chièze, S., Jiménez-Reyes, S. J., et al. 2007, Science 316, 1591Google Scholar
Kosovichev, A. G., Schou, J., Scherrer, P. H., et al. 1997, Sol. Phys. 170, 43Google Scholar
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars, Springer Berlin HeidelbergCrossRefGoogle Scholar
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A 549, A74Google Scholar
Mathis, S., Decressin, T., Eggenberger, P., & Charbonnel, C. 2013, A&A 558, A11Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A 548, A10Google Scholar
Palacios, A., Charbonnel, C., Talon, S., & Siess, L. 2006, A&A 453, 261Google Scholar
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ 338, 424CrossRefGoogle Scholar
Rüdiger, G., Gellert, M., Schultz, M., Hollerbach, R., & Stefani, F. 2014, MNRAS 438, 271Google Scholar
Spruit, H. C. 1999, A&A 349, 189Google Scholar
Spruit, H. C. 2002, A&A 381, 923Google Scholar
Talon, S. & Charbonnel, C. 2003, A&A 405, 1025Google Scholar
Turck-Chièze, S., Palacios, A., Marques, J. P., & Nghiem, P. A. P. 2010, ApJ 715, 1539Google Scholar
Zahn, J.-P., Talon, S., & Matias, J. 1997, A&A 322, 320Google Scholar