Published online by Cambridge University Press: 28 September 2023
Properties of bipolar magnetic regions (BMRs), particularly, the tilt angle play critical roles in generating the observed polar magnetic field and its reversal. Hence, a long-term study of BMR over its lifetime is crucial not only to understand the solar dynamo but also to identify the origin of the properties of BMR. In our work, we have developed an automatic algorithm to detect and track the BMRs from the line-of-sight (LOS) magnetograms of Michelson Doppler Imager (MDI) for the period of Solar Cycle 23 over its lifetime/disk passage. Here, we present the details of our algorithm and the features of BMR, particularly the tilt angle, magnetic field strength and lifetime.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.