No CrossRef data available.
Published online by Cambridge University Press: 01 July 2007
We computed the chemical evolution of Seyfert galaxies, residing in spiral bulges, based on an updated model for the Milky Way bulge with updated calculations of the Galactic potential and of the feedback from the central supermassive black hole (BH) in a spherical approximation. We followed the evolution of bulges of masses 2 × 109 − 1011M⊙ by scaling the star-formation efficiency and the bulge scalelenght as in the inverse-wind scenario for ellipticals. We successfully reproduced the observed relation between the BH mass and that of the host bulge, and the observed peak nuclear bolometric luminosity. The observed metal overabundances are easily achieved, as well as the constancy of chemical abundances with the redshift.