Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:16:30.406Z Has data issue: false hasContentIssue false

Close Binary Star Observables: Modeling Innovations 2003-06

Published online by Cambridge University Press:  12 July 2007

R. E. Wilson*
Affiliation:
Astronomy Department, University of Florida, Gainesville, FL, USA email:wilson@astro.ufl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Innovative work on close binary models in 2003-06 improved upon synthesized line spectra, line profiles, and polarimetry; developed new ways of parameter estimation; and increased solution effectiveness and efficiency. Recent applications demonstrate the analytic power of binary system line spectrum models that pre-date the triennium. X-ray binary line profiles and radial velocity curves were refined by solution of the radiative transfer problem with specific inclusion of X-irradiation. Model polarization curves were generated by Monte Carlo experiments with multiple Thomson scattering in thin and thick binary system disks. In the parameter estimation area, independent developments by two groups now allow measurement of ephemerides, apsidal motion, and third body parameters from whole light and velocity curves, to supplement the traditional way of eclipse timings. Although the new route to those parameters is not well known within the ephemeris community, there are accuracy advantages and the number of applications is increasing. Numerical solution experiments on photometric mass ratios have checked two views of their intuitive basis, and show that mass ratios are well determined where star radii and limiting lobe radii are both well determined, which is for semi-detached or over-contact binaries with total-annular eclipses. Solution efficiency and automatic operation is needed for processing of light curves from large surveys, and will also be valuable for preliminary solutions of individually observed binaries. Neural networks have mainly been used for classification, and now a neural network program reliably finds preliminary solutions for W UMa binaries. Archived model light curves and Fourier fitting also are being pursued for classification and for preliminary solutions. Light curves in physical units such as erg·sec−1·cm−3 now allow direct distance estimation by combining the absolute accuracy of model stellar atmospheres with the astrophysical detail of a physical close binary model, by means of rigorous scaling between surface emission and observable flux. A Temperature-distance (T-d) theorem specifies conditions under which temperatures of both stars and distance can be found from light and velocity curves.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Abubekerov, M.K., Antokhina, E.A., & Cherepashchuk, A.M. 2004, Astr. Reports 48, 89 Google Scholar
Antokhina, E.A., Cherepashchuk, A.M., & Shimanskii, V.V. 2005, Astr. Reports 49, 109 Google Scholar
Bessell, M.S. 1979, PASP 91, 589 CrossRefGoogle Scholar
Devinney, E.J., Guinan, E.F., Bradstreet, D., DeGeorge, M., Giammarco, J., Alcock, C., & Engle, S. 2006, BAAS 37, 1212 Google Scholar
Elias, N.M., Wilson, R.E., Olson, E.C., Aufdenberg, J.P., Guinan, E.F., Guedel, M. Van Hamme, W.V., & Stevens, H.L. 1997, ApJ 484, 394 Google Scholar
Groenewegen, M.A.T. 2004, A&A 439, 559 Google Scholar
Hadrava, P. 2004, WWW site http://www.asu.cas.cz/ Google Scholar
Harmanec, P., Božić, H., Thanjavur, K., Robb, R.M., Ru/v zdjak, D., & Sudar, D. 2004, A&A 415, 289 Google Scholar
Harmanec, P., Scholz, G. 1993, A&A 279, 131 Google Scholar
Hoffman, J.L., Whitney, B.A., & Nordsieck, K.H. 2003, ApJ 598, 572 Google Scholar
Horn, J., Kubát, P., Harmanec, P., Koubský, P., Hadrava, P. v, Simon, V., Stefl, S. & v, Skoda, P. 1996, A&A 309, 521 Google Scholar
Hubeny, I. 1990, ApJ 351, 632 CrossRefGoogle Scholar
Hubeny, I. 1991, in: Bertout, C., Collin-Souffrin, S. & Lasota, J.P. (eds.), Proc. IAU Colloq. 129 (Gif-sur-Yvette: Editions Frontiéres, Singapore: Fong & Sons), p. 227 Google Scholar
Janí k, J., Harmanec, P., Lehmann, H., Yang, S., Bov, zić, H, Ak, H., Hadrava, P., Eenens, P., Ruv zdjak, D., Sudar, D., Hubeny, I., & Linnell, A.P. 2003, A&A 408, 611 Google Scholar
Johnson, H.L. 1965, Comm. Lunar & Planetary Lab. 3, 73 Google Scholar
Kallrath, J. & Linnell, A.P. 1987, ApJ 313, 346 Google Scholar
Kemp, J.C., Henson, G.D., Barbour, M.S., Kraus, D.J., & Collins, G.W. 1983, ApJ 273, L85 Google Scholar
Kreiner, J.M., Kim, C.H., & Nha, I.S. 2001, “An Atlas of O-C Diagrams of Eclipsing Binary Stars”, (Krakow: Wydawnictwo Naukowe Akademii Pedagogicznej)Google Scholar
Kurucz, R.L. 1998, in Proc. IAU Symp. 189, ed. Bedding, T.R., Booth, A.J., & Davis, J. (Dordrecht: Kluwer), p. 217 Google Scholar
Linnell, A.P., Szkody, P., Gansicke, B., Long, K., Sion, E.M., Hoard, D.W., & Hubeny, I. 2005, ApJ 624, 923 CrossRefGoogle Scholar
Linnell, A.P., Harmanec, P., Koubský, P., Bovzić, H., Yang, S., Ruždjak, D., Sudar, D., Libich, J., Eenens, P., Krpata, J., Wolf, M., Škoda, P. & Šlechta, M. 2006, A&A 455, 1037 Google Scholar
Linnell, A.P. & Hubeny, I. 1994, ApJ 434, 738 Google Scholar
Linnell, A.P. & Hubeny, I. 1996, ApJ 471, 958 CrossRefGoogle Scholar
Mayer, P., Hadrava, P., & Harmanec, P. 1991, Bull. Astr. Inst. Czech. 42, 230 Google Scholar
McAlister, H.A., Hartkopf, W.I., & Franz, O.G. 1990, AJ 99, 965 Google Scholar
Paczynski, B., Szczygiel, D.M., Pilecki, B., & Pojmanski, G. 2006, MNRAS 368, 1311 CrossRefGoogle Scholar
Pojmanski, G. 2002, Acta Astr. 52, 397 Google Scholar
Prv, sa, A. & Zwitter, T. 2005a, ApJ 628, 426 Google Scholar
Prv, sa, A. & Zwitter, T. 2005b, Ap&SS 296, 315 Google Scholar
Rossiter, R.A. 1924, ApJ 60, 15 CrossRefGoogle Scholar
Rovithis-Livaniou, H. 2005, Ap&SS 296, 91 Google Scholar
Rucinski, S. 1993, AJ 105, 1433 Google Scholar
Sarro, L.M., Sanchez-Fernandez, C., & Gimenez, A. 2006, A&A 446, 395 Google Scholar
Schlesinger, F. 1909, Publ. Allegheny Obs. 1, 123 Google Scholar
Schlesinger, F. 1916, Publ. Allegheny Obs. 3, 23 Google Scholar
Sterne, T. 1941, Proc. Nat. Acad. Sci. (U.S.) 27, 168 Google Scholar
Tarasov, A.E., Harmanec, P., Horn, J., Lyubimkov, L.S., Rostopchin, S.I., Koubský, P., Blake, C., Kostunin, V.V., Walker, G.A.H., & Yang, S. 1995, A&AS 110, 59 Google Scholar
Terrell, D. & Wilson, R.E. 2005, Ap&SS 296, 221 Google Scholar
Van, Hamme, W. & Wilson, R.E. 2003, in: Munari, U. (ed.), Gaia Spectroscopy, Science and Technology (San Francisco: ASP), vol. 298, p. 323 Google Scholar
Van, Hamme, W. & Wilson, R.E. 2007, ApJ, 662, in pressGoogle Scholar
Van, Hamme, W. & Wilson, R.E. 2005, Ap&SS, 296, 121 Google Scholar
Wilson, R.E. 1979, ApJ 234, 1054 Google Scholar
Wilson, R.E. 1990, ApJ 356, 613 Google Scholar
Wilson, R.E. 1994, PASP 106, 921 CrossRefGoogle Scholar
Wilson, R.E. 2005, Ap&SS, 296, 197 Google Scholar
Wilson, R.E. 2006, Proc. Seventh Pacific Rim Conference on Stellar Astrophysics, ASP Conf. Ser. vol. 362, 3Google Scholar
Wilson, R.E. & Devinney, E.J. 1971, ApJ 166, 605 Google Scholar
Wilson, R.E. & Sofia, S. 1976, ApJ 203, 182 Google Scholar
Wyithe, J.S.B. & Wilson, R.E. 2001, ApJ 559, 260 Google Scholar
Wyithe, J.S.B. & Wilson, R.E. 2002, ApJ 571, 293 CrossRefGoogle Scholar