No CrossRef data available.
Published online by Cambridge University Press: 25 July 2014
Compton thick active galactic nuclei (AGN), which are obscured by column density NH > 1.5 × 104 cm−2, can be difficult to identify. They are certainly cosmically significant, both in producing the observed cosmic X-ray background, and in providing a location where black hole growth is hidden from view. Here I review some recent results from surveys that provide indications of Compton thick AGN, considering X-ray, radio, and infrared selection techniques. I also offer a caution against using mid-infrared silicate features to measure line-of-sight obscuration to active galactic nuclei. Instead, these features better indicate the geometric distribution of dust that the central engine heats. I conclude that the outstanding problem of Compton thick AGN is not the cases where the obscuration is directly associated with the environment of the active nucleus itself, even in the most obscured examples. Instead, we still risk missing the completely buried AGN, which are obscured by large amounts of gas and dust over large solid angles. The solution to finding Compton thick AGN may be to begin the search based on infrared emission and star formation, and then select for nuclear activity.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.