Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T14:21:21.388Z Has data issue: false hasContentIssue false

Damped oscillations of two interacting coronal loops

Published online by Cambridge University Press:  01 September 2007

I. Arregui
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain email: inigo.arregui@uib.es, jaume.terradas@uib.es, ramon.oliver@uib.es, dfsjlb0]@uib.es
J. Terradas
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain email: inigo.arregui@uib.es, jaume.terradas@uib.es, ramon.oliver@uib.es, dfsjlb0]@uib.es Centrum voor Plasma Astrofysica, K.U. Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
R. Oliver
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain email: inigo.arregui@uib.es, jaume.terradas@uib.es, ramon.oliver@uib.es, dfsjlb0]@uib.es
J. L. Ballester
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain email: inigo.arregui@uib.es, jaume.terradas@uib.es, ramon.oliver@uib.es, dfsjlb0]@uib.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results on the oscillatory properties (periods, damping rates, and spatial distribution of perturbations) for resonantly damped oscillations in a system of two inhomogeneous coronal slabs and compare them to the properties found in single slab loop models. A system of two identical coronal loops is modelled, in Cartesian geometry, as being composed by two density enhancements. The linear magnetohydrodynamic (MHD) wave equations for oblique propagation of waves are solved and the damping due to resonant absorption is computed. Due to the interaction between the loops, the normal modes of oscillation present in a single slab split into symmetric and antisymmetric oscillations when a system of two identical slabs is considered. The frequencies of these solutions may differ from the single slab results when the distance between the loops is of the order of a few slab widths. Oblique propagation of waves weakens this interaction, since solutions become more confined to the edges of the slabs. The damping is strong for surface-like oscillations, while sausage body-like solutions are unaffected.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Andries, J., Arregui, I., & Goossens, M. 2005, ApJ, 624, L57CrossRefGoogle Scholar
Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., & Poedts, S. 2007a, A&A, 463, 333Google Scholar
Arregui, I., Terradas, J., Oliver, R., & Ballester, J. L. 2007b, Solar Phys., in press, DOI 10.1007/s11207-007-9041-3Google Scholar
Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., & Title, A. M. 2002, Solar Phys., 206, 99CrossRefGoogle Scholar
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ, 520, 880CrossRefGoogle Scholar
Díaz, A. J., Oliver, R., & Ballester, J. L. 2003, A&A, 402, 781Google Scholar
Goossens, M., Andries, J., & Arregui, I. 2006, Phil. Trans. Series A, 364, 433Google Scholar
Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39Google Scholar
Hollweg, J. V. & Yang, G. 1988, J. Geophys. Res., 93, 5423CrossRefGoogle Scholar
Luna, M., Terradas, J., Oliver, R., & Ballester, J. L. 2006, A&A, 457, 1071Google Scholar
Nakariakov, V. M. & Ofman, L. 2001, A&A, 372, L53Google Scholar
Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., & Davila, J. M. 1999, Science, 285, 862CrossRefGoogle Scholar
Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857CrossRefGoogle Scholar
Ruderman, M. S. & Roberts, B. 2002, ApJ, 577, 475CrossRefGoogle Scholar
Schrijver, C. J., Aschwanden, M. J., & Title, A. M. 2002, Solar Phys., 206, 69CrossRefGoogle Scholar
Sewell, G. 2005, The Numerical Solution of Ordinary and Partial Differential Equations (Wiley-Interscience)CrossRefGoogle Scholar
Uchida, Y. 1970, Pub. Astron. Soc. Japan, 22, 341Google Scholar
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006, A&A, 452, 615Google Scholar
Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Solar Phys., 223, 77CrossRefGoogle Scholar