Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:09:16.205Z Has data issue: false hasContentIssue false

Deathzones and exponents: A different approach to incorporating mass loss in stellar evolution calculations

Published online by Cambridge University Press:  01 April 2008

Lee Anne Willson*
Affiliation:
Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA email: lwillson@iastate.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations tend to select mass loss rates near the critical rate, crit = M/L. There are two reasons for this. In some situations, such as near the tip of the AGB, the mass loss rate is very sensitive to stellar parameters. In this case, stars with crit have dust-free, hard-to-measure mass loss rates while stars with crit do not survive very long and thus make up a small fraction of any sample. Selection effects dominate the fitting of empirical formulae; observations of mass loss rates tell us more about which stars are losing mass than about how a star loses mass. In other situations, such as for some of the stars along the RGB, a steady state situation occurs where the loss of mass leads to a decrease in mass loss rate while the evolutionary changes lead to an increase; the result is a steady state with = crit. To determine the envelope mass and composition at the end of a phase of intensive mass loss requires stellar evolution models capable of responding on a time scale ~ tKH and thus, a new generation of stellar modeling codes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Abbott, D.-C. 1982, ApJ, 259, 282CrossRefGoogle Scholar
Baud, B. & Habing, H. J. 1983 aap, 127, 7883Google Scholar
Bazán, G., et al. 2003, 3D Stellar Evolution, 293, 1Google Scholar
Blöcker, T. 1995, aap, 297, 727Google Scholar
Bowen, G. H. & Willson, L. A. 1991, ApJ, 375, L53CrossRefGoogle Scholar
Bowen, G. H. 1988, ApJ, 329, 299CrossRefGoogle Scholar
Bryan, G., Volk, K., & Kwok, S. 1990, ApJ, 365, 301–211Google Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157CrossRefGoogle Scholar
Frankowski, A. 2003, aap, 406, 265Google Scholar
Höfner, S., Gautschy-Loidl, R., Aringer, B., & Jørgensen, U. G. 2003, aap, 399, 589Google Scholar
Höfner, S. & Anderson, A. 2007, A&A, 465, L39L42Google Scholar
Höfner, S. 2007, Why Galaxies Care About AGB Stars: Their Importance as Actors and Probes, 378, 145Google Scholar
Hjellming, M. S., & Webbnik, R. F. 1987, ApJ, 318, 794CrossRefGoogle Scholar
Iben, I. Jr., 1984, ApJ, 277, 333CrossRefGoogle Scholar
Iben, I. Jr., & Renzini, A. 1983, ARAA, 21, 271342Google Scholar
Jura, M. & Kleinmann, S. G. 1992, ApJS, 79, 105121CrossRefGoogle Scholar
Kudritzki, R. P., Pauldrach, A., Puls, J., & Abbott, D. C. 1989, aap, 219, 205Google Scholar
Mattson, L., Wahlin, R., H'ofner, S., & Eriksson, K. in press, A&A, ArXiv 0804.2482Google Scholar
Origlia, L., Rood, R. T., Fabbri, S., Ferraro, F. R., Fusi Pecci, F., & Rich, R. M. 2007, ApJL, 667, L85CrossRefGoogle Scholar
Ostlie, D. A. & Cox, A. N. 1986, ApJ, 311, 864CrossRefGoogle Scholar
Reimers, D. 1975, Mem. Soc. Roy. Sci. Liège, 8, 369Google Scholar
Schröder, K.-P. & Cuntz, M. 2005, ApJ, 630, L73CrossRefGoogle Scholar
van Loon, J. T., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C. 2005, aap, 438, 273Google Scholar
Vassiliadis, E. & Wood, P. R. 1993, ApJ, 413, 641CrossRefGoogle Scholar
Volk, K. and Kwok, S. 1988, ApJ, 331, 435462CrossRefGoogle Scholar
Wachter, A., Schröder, K.-P., Winters, J. M., Arndt, T. U., & Sedlmayr, E. 2002, aap, 384, 452Google Scholar
Webbink, R. F. 1976, ApJ, 209, 829CrossRefGoogle Scholar
Willson, L. A. 2000, ARAA, 38, 573CrossRefGoogle Scholar
Willson, L. A. 2006, ESO Astrophysics Symposia, Springer, Planetary Nebulae Beyond the Milky Way, 99Google Scholar
Willson, L. A. 2007, ASP Conference Series, Vol. 378, Why Galaxies Care About AGB Stars: Their Importance as Actors and Probes, p211Google Scholar
Willson, L. A. 2008, ASP Conference Series, The BIggest Baddest Coolest Stars, in press.Google Scholar
Willson, L. A. & Kim, A. 2004, ASP Conf. Ser. 313: Asymmetrical Planetary Nebulae III: Winds, Structure and the Thunderbird, 313, 394Google Scholar