Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T09:49:16.108Z Has data issue: false hasContentIssue false

ISM simulations: an overview of models

Published online by Cambridge University Press:  05 March 2015

M. A. de Avillez
Affiliation:
Dept. of Mathematics, University of Évora, 7000 Évora, Portugal email: mavillez@galaxy.lca.uevora.pt, spitoni@galaxy.lca.uevora.pt Dept. of Astronomy & Astrophysics, Technical University Berlin, D-10623 Berlin, Germany email: breitschwerdt@astro.physik.tu-berlin.de
D. Breitschwerdt
Affiliation:
Dept. of Astronomy & Astrophysics, Technical University Berlin, D-10623 Berlin, Germany email: breitschwerdt@astro.physik.tu-berlin.de
A. Asgekar
Affiliation:
ASTRON, P.O. Box 2, 7990 AA Dwingeloo, The Netherlands
E. Spitoni
Affiliation:
Dept. of Mathematics, University of Évora, 7000 Évora, Portugal email: mavillez@galaxy.lca.uevora.pt, spitoni@galaxy.lca.uevora.pt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARAA 47, 481Google Scholar
Balsara, D. S., Kim, J., Mac Low, M.-M., & Mathews, G. J. 2004, ApJ 617, 339CrossRefGoogle Scholar
Bania, T. M. & Lyon, J. G. 1980, ApJ 239, 173Google Scholar
Berger, M. J. & Oliger, J. 1984, JCP 484Google Scholar
Borkowski, K. J., Sarazin, C. L., & Blondin, J. M. 1994, ApJ 429, 710Google Scholar
Breitschwerdt, D., Schmutzler, T. 1994, Nature 371, 774CrossRefGoogle Scholar
Chiang, W.-H. & Prendergast, K. H. 1985, ApJ 297, 507Google Scholar
Chiang, W.-H. & Bregman, J. N. 1988, ApJ 328, 427CrossRefGoogle Scholar
Cox, D. P. & Anderson, P. R. 1982, ApJ 253, 268Google Scholar
Cox, D. P. & Smith, B. W. 1974, ApJ (Letters) 189, L105CrossRefGoogle Scholar
de Avillez, M. A. & Breitschwerdt, D. 2005, A&A 436, 585Google Scholar
de Avillez, M. A. & Breitschwerdt, D. 2007, ApJ (Letters) 665, L35Google Scholar
de Avillez, M. A. & Breitschwerdt, D. 2012, ApJ (Letters) 761, L19CrossRefGoogle Scholar
Gnat, O. & Sternberg, A. 2007, ApJS 168, 213Google Scholar
Gressel, O., Elstner, D., Ziegler, U., & Rödiger, G. 2008, A&A 486, 35Google Scholar
Hanasz, M., Kowal, G, Otmianowska-Mazur, K., & Lesch, H. 2004, A&A (Letters) 605, L33Google Scholar
Hill, A. S., Joung, M. R., Mac Low, M.-M., et al. 2012, ApJ 750, 104Google Scholar
Innes, D. E., Giddings, J. R., & Falle, S. A. E. G. 1987, MNRAS 227, 1021Google Scholar
Joung, M. K. R. & Mac Low, M.-M. 2006, ApJ 653, 1266Google Scholar
Korpi, M. J., Brandenburg, A., Shukurov, A., et al. 1999, ApJ (Letters) 514, L99Google Scholar
Melioli, C., Brighenti, F., D'Ercole, A. & Gouveia Dal Pino, E. M. 2009, MNRAS 399, 1089CrossRefGoogle Scholar
McKee, C. F. & Ostriker, J. P. 1977, ApJ 218, 148CrossRefGoogle Scholar
Norman, C. A. & Ikeuchi, S. 1989, ApJ 345, 372CrossRefGoogle Scholar
Rosen, A., Bregman, J. N., & Norman, M. L. 1993, ApJ 413, 137Google Scholar
Rosen, A. & Bregman, J. N. 1995, ApJ 440, 634Google Scholar
Shapiro, P. R. & Field, G. B. 1976, ApJ 205, 762Google Scholar
Smith, R. K. & Cox, D. P. 2001, ApJS 134, 283Google Scholar
Sutherland, R. S. & Dopita, M. A. 1993, ApJ 88, 253Google Scholar
Vazquez-Semadeni, E., Passot, T., & Pouquet, A. 1995, ApJ 441, 702CrossRefGoogle Scholar