Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:24:15.550Z Has data issue: false hasContentIssue false

Dynamics of pairwise motions in the Cosmic Web

Published online by Cambridge University Press:  12 October 2016

Wojciech A. Hellwing*
Affiliation:
Interdisciplinary Center for Mathematical and computational modelling (ICM), University of Warsaw, ul. Pawińskiego 2a, 02-186 Warsaw, Poland email: wojciech.hellwing@durham.ac.uk Institute for Computational Cosmology, University of Durham, Science Site, South Road, DH1-3LE Durham, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results of analysis of the dark matter (DM) pairwise velocity statistics in different Cosmic Web environments. We use the DM velocity and density field from the Millennium 2 simulation together with the NEXUS+ algorithm to segment the simulation volume into voxels uniquely identifying one of the four possible environments: nodes, filaments, walls or cosmic voids. We show that the PDFs of the mean infall velocities v12 as well as its spatial dependence together with the perpendicular and parallel velocity dispersions bear a significant signal of the large-scale structure environment in which DM particle pairs are embedded. The pairwise flows are notably colder and have smaller mean magnitude in wall and voids, when compared to much denser environments of filaments and nodes. We discuss on our results, indicating that they are consistent with a simple theoretical predictions for pairwise motions as induced by gravitational instability mechanism. Our results indicate that the Cosmic Web elements are coherent dynamical entities rather than just temporal geometrical associations. In addition it should be possible to observationally test various Cosmic Web finding algorithms by segmenting available peculiar velocity data and studying resulting pairwise velocity statistics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aragón-Calvo, M. A., van de Weygaert, R., & Jones, B. J. T. 2010, MNRAS, 408, 2163, 1007.0742CrossRefGoogle Scholar
Bond, J. R., Kofman, L., & Pogosyan, D. 1996, Nature, 380, 603, astro-ph/9512141CrossRefGoogle Scholar
Boylan-Kolchin, M., Springel, V., White, S. D. M., Jenkins, A., & Lemson, G. 2009, MNRAS, 398, 1150, 0903.3041CrossRefGoogle Scholar
Cautun, M., van de Weygaert, R., & Jones, B. J. T. 2013, MNRAS, 429, 1286, 1209.2043CrossRefGoogle Scholar
Cautun, M., van de Weygaert, R., Jones, B. J. T., & Frenk, C. S. 2014, MNRAS, 441, 2923, 1401.7866CrossRefGoogle Scholar
Chodorowski, M. J., & Ciecieląg, P. 2002, MNRAS, 331, 133, astro-ph/0109291CrossRefGoogle Scholar
Ciecieląg, P., Chodorowski, M. J., Kiraga, M., Strauss, M. A., Kudlicki, A., & Bouchet, F. R. 2003, MNRAS, 339, 641, astro-ph/0010364CrossRefGoogle Scholar
Davis, M., & Peebles, P. J. E. 1977, ApJS, 34, 425 CrossRefGoogle Scholar
Falck, B., Koyama, K., Zhao, G.-b., & Li, B. 2014, JCAP, 7, 58, 1404.2206CrossRefGoogle Scholar
Juszkiewicz, R., Springel, V., & Durrer, R. 1999, ApJL, 518, L25, astro-ph/9812387CrossRefGoogle Scholar
Metuki, O., Libeskind, N. I., Hoffman, Y., Crain, R. A., & Theuns, T. 2014, ArXiv e-prints, 1405.0281Google Scholar
Nuza, S. E., Kitaura, F.-S., Heß, S., Libeskind, N. I., & Müller, V. 2014, MNRAS, 445, 988, 1406.1004CrossRefGoogle Scholar
Peebles, P. J. E. 1980, The large-scale structure of the universe (Research supported by the National Science Foundation. Princeton, N.J., Princeton University Press, 1980. 435 p.)Google Scholar
Scoccimarro, R. 2004, Phys. Rev. D, 70, 083007, astro-ph/0407214CrossRefGoogle Scholar
Sheth, R. K., & van de Weygaert, R. 2004, MNRAS, 350, 517, astro-ph/0311260CrossRefGoogle Scholar
Springel, V., Frenk, C. S., & White, S. D. M. 2006, Nature, 440, 1137, astro-ph/0604561CrossRefGoogle Scholar