Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-10-31T14:01:41.377Z Has data issue: false hasContentIssue false

Eliminating Noise at the Box-fitting Spectrum

Published online by Cambridge University Press:  29 April 2014

Rodrigo Carlos Boufleur
Affiliation:
Observatório Nacional, MCTI Rua Gen. José Cristino, 77 – Rio de Janeiro, RJ, Brasil – CEP 20921-400 email: rcboufleur@on.br
Marcelo Emilio
Affiliation:
Universidade Estadual de Ponta Grossa, Observatório Astronômico Av. Carlos Cavalcanti, 4748 – Ponta Grossa, PR, Brasil – CEP 84030-900 email: memilio@uepg.br
Eduardo Janot Pacheco
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo Rua do Matão, 1226 – São Paulo, SP, Brasil – CEP 05508-900
Jorge Ramiro de La Reza
Affiliation:
Observatório Nacional, MCTI Rua Gen. José Cristino, 77 – Rio de Janeiro, RJ, Brasil – CEP 20921-400 email: rcboufleur@on.br
José Carlos da Rocha
Affiliation:
Universidade Estadual de Ponta Grossa, Observatório Astronômico Av. Carlos Cavalcanti, 4748 – Ponta Grossa, PR, Brasil – CEP 84030-900 email: memilio@uepg.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Non gaussian sources of erros need to be taken into consideration when searching for planetary transits. Such phenomena are mostly caused by the impact of high energetic particles on the detector (Pinheiro da Silva et al. 2008). The detection efficiency of transits, therefor, depend significantly on the data quality and the algorithms utilized to deal with these errors sources. In this work we show that a modified detrend algorithm CDA (CoRoT Detrend Algorithm; Mislis et al. 2010) using a robust statistics and an empirical fit, instead of a polynomial one, can eliminate more efficiently gaps in the data and other long-term trends from the light-curve. Using this algorithm enables us to obtain a reconstructed light-curve with better signal-to-noise ratio that allows to improve the detection of exoplanet transits, although long term signals are destroyed. The results show that these modifications lead to an improved BLS (Box-fitting Least Squares; Kovács, Zucker & Mazeh 2002) algorithm spectrum. At the end we have compared our planetary search results with CoRoT (Convection, Rotation and planetary Transits) satellite chromatic light-curves available in the literature.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Cabrera, J., Fridlund, M., Ollivier, M., et al. 2009 A&A, 506, 501Google Scholar
Carone, L., Gandolfi, D., Cabrera, J., et al. 2012, A&A, 538, 112Google Scholar
Carpano, S., Cabrera, J., Alonso, R., et al. 2009, A&A, 506, 491Google Scholar
Cavarroc, C., Moutou, C., Gandolfi, D., et al. 2012, Astrophysics & Space Science, 337, 511Google Scholar
Erikson, A., Santerne, A., Renner, S., et al. 2012, A&A, 539, 14Google Scholar
Kim, D.-W., Protopapas, P., Alcock, C., et al. 2009, MNRAS, 397, 558Google Scholar
Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369Google Scholar
Kovács, G. & Bakos, G. 2008, Communications in Asteroseismology, 157, 82Google Scholar
Mazeh, T., Tamuz, O., & Zucker, S. 2007, in: Afonso, C., Weldrake, D. & Henning, T. (eds.), Transiting Extrasolar Planets Workshop, 366, 119Google Scholar
Mislis, D., Schmitt, J. H. M. M., Carone, L., Guenther, E. W., et al. 2010, A&A, 522, 86Google Scholar
Ofir, A., Alonso, R., Bonomo, A. S., et al. 2010, MNRAS, 404, 99CrossRefGoogle Scholar
Pinheiro da Silva, L., Rolland, G., Lapeyrere, V., & Auvergne, M. 2008, MNRAS, 384, 1337Google Scholar
Rauer, H. & Erikson, A. 2007, in: Dvorak, R. (ed.), Extrasolar Planets. Formation, Detection and Dynamics (Wiley-VCH), p. 205Google Scholar